内容提要

本书是教育部新世纪高职高专教改项目成果教材,主要内容包括塑料成形基础、塑料模具设计和塑料模具制造。

本书兼顾了理论基础和生产实践两个方面,内容全面,实用性强,可作为高等职业学校、高等专科学校、成人高校及普通高校本科塑料模具设计与制造课程的教材,亦可供从事模具设计、制造的工程技术人员使用。
为认真贯彻《中共中央国务院关于深化教育改革全面推进素质教育的决定》和《面向二十一世纪教育振兴行动计划》，研究高职高专教育跨世纪发展战略和改革措施，整体推进高职高专教育改革，教育部决定组织实施《新世纪高职高专教育人才培养模式和教学内容体系改革与建设项目计划》（教高[1997]5号，以下简称《计划》）。《计划》的目标是：“经过五年的努力，初步形成适应社会主义现代化建设需要的具有中国特色的高职高专教育人才培养模式和教学内容体系。”《计划》的研究项目涉及高职高专教育的地位、作用、性质、培养目标、培养模式、教学内容与课程体系、教学方法与手段、教学管理等诸多方面，重点是人才培养模式的改革和教学内容体系的改革，先导是教育思想的改革和教育观念的转变。与此同时，为了贯彻落实《教育部关于加强高职高专教育人才培养工作的意见》（教高[1997]5号）的精神，教育部高等教育司决定从1998年起，在全国各省市的高等职业学校、高等专科学校、成人高等学校以及本科院校的职业技术学院（以下简称高职高专院校）中广泛开展专业教学改革试点工作，目标是：在全国高职高专院校中，遴选若干专业点，进行以提高人才培养质量为目的、人才培养模式改革与创新为主题的专业教学改革试点，经过几年的努力，力争在全国建成一批特色鲜明、在国内同类教育中具有带头作用的示范专业，推动高职高专教育的改革与发展。

教育部《计划》和专业试点等新世纪高职高专教改项目工作开展以来，各有关高职高专院校投入了大量的人力、物力和财力，在高职高专教育人才培养目标、人才培养模式以及专业设置、课程改革等方面做了大量的研究、探索和实践，取得了不少成果。为使这些教改项目成果能够得以固化并更好地推广，从而总体上提高高职高专教育人才培养的质量，我们组织了有关高职高专院校进行了多次研讨，并从中遴选出了一些较为成熟的成果，组织编写了一批“新世纪高职高专教改项目成果”教材。这些教材结合教改项目成果，反映了最新的教学改革方向，很值得广大高职高专院校借鉴。

新世纪高职高专教改项目成果教材适用于高等职业学校、高等专科学校、成人高校及本科院校举办的二级职业技术学院、继续教育学院和民办高校使用。

高等教育出版社
2002年11月30日
随着现代工业发展的需要,塑料制品在工业、农业和日常生活等各个领域的应用越来越广泛,质量要求也越来越高。在塑料制品的生产中,高质量的模具设计、先进的模具制造设备、合理的加工工艺、优质的模具材料和现代化的成形设备等都是成形优质塑件的重要条件。为此,作者在多年从事科研、教学和生产实践的基础上,参考了国内、外大量有关塑料制品设计、制造方面的专著和最新技术资料,整理编写了此书。

本书详细论述了注射成形、压缩成形、压注成形、挤出成形、气动成形等各类成形工艺与模具设计,以及注射成形模具的制造与实例,力求做到理论联系实际和反映国内、外先进水平。

本书共分 10 章,由天津科技大学张秀棉编写第 2、3、4 章,天津理工大学齐卫东编写第 5、6、7、8、9 章和第 10 章的 1、2 节,付丽编写第 10、11、12 章,周小玉编写第 13 章的 1、2 节。由齐卫东主编并负责全书的统稿和修改,毕大森任副主编。

天津科技大学吴崇峰教授审阅了本书,并提出了许多宝贵意见。本书在编写过程中得到了有关单位尤其是天津理工大学的大力支持和帮助,在此一并表示衷心感谢。

本书可作为高等职业学校、高等专科学校、成人高校及普通高校本科塑料模具设计与制造课程的教材,亦可供从事模具设计、制造的工程技术人员使用。

由于作者水平有限,书中难免有不当和错误之处,恳请使用本书的教师和广大读者批评指正。

编 者 2004 年 5 月
第1章 塑料成形基础

1.1

1.1.1 聚合物的分子结构

聚合物的分子结构

塑料是以高分子合成树脂为基本原料,加入一定量的添加剂组成,在一定的温度、压力下可塑制成具有一定结构形状,能在常温下保持其形状不变的材料。

合成树脂是由一种或几种简单化合物通过聚合反应生成的一种高分子化合物,也叫聚合物,这些简单的化合物也称为单体。

例如:若干个乙烯单体分子,在适当条件($\text{温度} \leq 100 \text{ MPa} \leq 200 \text{ °C}$)下,聚合形成高分子化合物(即聚合物)聚乙烯。其反应式如下:

$$ n\text{CH}_2 \rightarrow \text{CH}_2 - \text{CH}_2 - \cdots \text{CH}_2 $$

上式中:

- CH_2 是乙烯单体;
- $\text{CH}_2 - \text{CH}_2 - \cdots \text{CH}_2$ 是聚乙烯,将其展开得到

- $\text{CH}_2 - \text{CH}_2 - \cdots \text{CH}_2 \cdots \text{CH}_2 - \cdots \text{CH}_2 - \cdots \text{CH}_2$ 是结构单元,也叫链节;
- $\text{CH}_2 - \text{CH}_2 - \cdots \text{CH}_2 - \cdots \text{CH}_2$ 称为链节数或者聚合度,表示有多少链节聚合在一起。由许多链节构成一个很长的聚合物分子,称为“分子链”。

与低分子结构相比,聚合物的高分子结构有如下特点:

- 低分子所含原子数都很少,而一个高分子中含有几千个、几万个,甚至几百万个原子。
- 相对分子质量。低分子化合物如水的相对分子质量为18,石灰石的相对分子质量为100,酒精的相对分子质量为46,蔗糖的相对分子质量为324,这些低分子化合物的相对分子质量只有几十或几百。而高分子化合物的相对分子质量比低分子高得多,一般可自几万至几十万、几百万甚至上千万。例如尼龙分子的相对分子质量为二万三千左右,天然橡胶为四十万。

- 分子长度。低分子例如乙烯的长度约为0.000 5 μm,而高分子聚乙烯的长度为6.8 μm,后者是前者的1000倍。

如果聚合物的分子链呈不规则的线状(或者团状),则聚合物是一根根的分子链组成的,称为线型聚合物,如图所示。如果在大分子的链之间还有一些短链把它们连接起来,成
为立体结构，则称为体型聚合物，如图所示。此外，还有一些聚合物的大分子主链上带有一些或长或短的小支链，整个分子链呈枝状，如图所示，称为带有支链的线型聚合物。

图 聚合物分子链结构示意图

聚合物的聚集态结构及其性能

聚合物由于分子特别大且分子间引力也较大，容易聚集为液态或固体而不形成气态。固体聚合物的结构按照分子排列的几何特征，可分为结晶型和非结晶型（或无定型）两种。

结晶型聚合物由“晶区”（分子做有规则紧密排列的区域）和“非晶区”（分子处于无序状态的区域）所组成，如图所示。晶区所占的质量百分数称为结晶度，例如低压聚乙烯在室温时的结晶度为。通常聚合物的分子结构简单，主链上带有的侧基体积小、对称性高，分子间作用力大，有利于结晶；反之，则对结晶不利或不能形成结晶区。结晶只发生在线性聚合物和含交联不多的体型聚合物中。

图 结晶型聚合物结构示意图

图 1.1

图 1.2

图 1.3
用力，所以使聚合物的强度、硬度、刚度及熔点、耐热性和耐化学性等性能有所提高，但与链运动有关的性能如弹性、伸长率和冲击强度等则有所降低。

对于非结晶聚合物的结构，过去一直认为其分子排列是杂乱无章的，相互穿插交缠的。但在电子显微镜下观察，发现无定型聚合物的质点排列不是完全无序的，而是大距离范围内无序，小距离范围内有序，即“远程无序，近程有序”。体型聚合物由于分子链间存在大量交联，分子链难以做有序排列，所以绝大部分是无定型聚合物。

塑料的组成及分类

塑料的组成

塑料是以合成树脂为主要成分，再加入改善其性能的各种各样的添加剂（也称助剂）制成的。在塑料中，树脂起决定性的作用，但也不能忽略添加剂的作用。

(1) 树脂

树脂是塑料中最重要的成分，它决定了塑料的类型和基本性能（如热性能、物理性能、化学性能、力学性能等）。在塑料中，它联系或胶黏着其他成分，并使塑料具有可塑性和流动性，从而具有成形性能。树脂包括天然树脂和合成树脂。在塑料生产中，一般都采用合成树脂。

(2) 填充剂

填充剂又称填料，是塑料中的重要的但并非每种塑料必不可少的成分。填充剂与塑料中的其他成分机械混合，它们之间不起化学作用，但与树脂牢固胶黏在一起。

填充剂在塑料中的作用有两个：一是减少树脂用量，降低塑料成本；二是改善塑料的某些性能，扩大塑料的应用范围。在许多情况下，填充剂所起的作用是很大的。例如，聚乙烯、聚氯乙烯等树脂中加入木粉后，既克服了它的脆性，又降低了成本。用玻璃纤维作为塑料的填充剂，能使塑料的力学性能大幅度提高，而用石棉作填充剂则可以提高塑料的耐热性。有的填充剂还可以使塑料具有树脂所没有的性能，如导电性、导磁性、导热性等。常用的填充剂有木粉、纸浆、云母、石棉、玻璃纤维等。

(3) 增塑剂

有些树脂（如硝酸纤维、醋酸纤维、聚氯乙烯等）的可塑性很小，柔软性也很差。为了降低树脂的熔融黏度和熔融温度，改善其成形加工性能，改进塑件的柔韧性、弹性以及其他各种必要的性能，通常加入能与树脂相溶的、不易挥发的高沸点有机化合物，这类物质称为增塑剂。

在树脂中加入增塑剂后，增塑剂分子插入到树脂高分子链之间，增大了高分子链间的距离，因而削弱了高分子间的作用力，使树脂高分子容易产生相对滑移，从而使塑料能在较低的温度下具有良好的可塑性和柔软性。常用的增塑剂有邻苯二甲酸二丁酯、邻苯二甲酸二辛酯等。

(4) 着色剂

为使塑件获得各种所需色彩，常常在塑料组分中加入着色剂。着色剂品种很多，但大体分为有机颜料、无机颜料和染料三大类。要求着色剂着色力强；与树脂有很好的相溶性；不与塑料中其他成分起化学反应；成形过程中不因温度、压力变化而分解变色；而且在塑件的长期使用过程中能够保持稳定。

(5) 稳定剂

塑 料 概 论
为了防止或抑制塑料在成形、储存和使用过程中,因受外界因素(如热、光、氧、射线等)作用所引起的性能变化,即所谓“老化”,需要在聚合物中添加稳定剂。稳定剂可分为热稳定剂、光稳定剂、抗氧化剂等。常用的稳定剂有硬脂酸盐类、铅的化合物、环氧化合物等。

固化剂
固化剂又称硬化剂、交联剂。成形热固性塑料时,线型高分子结构的合成树脂需发生交联反应转变成体型高分子结构。添加固化剂的目的是促进交联反应。如在环氧树脂中加入乙二胺、三乙醇胺等。

塑料的添加剂还有发泡剂、阻燃剂、防静电剂、导电剂和导磁剂等。并不是每一种塑料都要加入全部这些添加剂,而是依塑料品种和塑件使用要求按需要有选择地加入某些添加剂。

塑料的分类
塑料的品种较多,分类的方式也很多,常用的分类方法有以下两种。

1. 根据塑料中树脂的分子结构和热性能分类
 - 热塑性塑料
 这种塑料中树脂的分子结构是线型或支链型结构。它在加热时可塑制成一定形状的塑件,冷却后保持已定型的形状。如再次加热,又可软化熔融,可再次塑制成一定形状的塑件,如此可反复多次。在上述过程中一般只有物理变化而无化学变化。由于这一过程是可逆的,在塑料加工中产生的边角料及废品可以回收粉碎成颗粒后重新利用。
 - 聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚酰胺、聚甲醛、聚碳酸酯、有机玻璃、聚砜、氟塑料等都属热塑性塑料。
 - 热固性塑料
 这种塑料在受热之初分子为线型结构,具有可塑性和可溶性,可塑制成为一定形状的塑件。当继续加热时,线型高聚物分子主链间形成化学键结合(即交联),分子呈网状结构,分子最终变为体型结构,变得既不熔融,也不溶解,塑件形状固定下来不再变化。上述成形过程中,既有物理变化又有化学变化。由于热固性塑料具有上述特性,故加工中的边角料和废品不可回收再生利用。
 - 属于热固性塑料的有酚醛塑料、氨基塑料、环氧塑料、有机硅塑料、硅酮塑料等。

2. 根据塑料性能及用途分类
 - 通用塑料
 这类塑料是指产量大、用途广、价格低的塑料。主要包括聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯、酚醛塑料和氨基塑料六大品种,它们的产量占塑料总产量的一半以上,构成了塑料工业的主体。
 - 工程塑料
 这类塑料常指在工程技术中用做结构材料的塑料。除具有较高的机械强度外,这类塑料还具有很好的耐磨性、耐腐蚀性、自润滑性及尺寸稳定性等。它们具有某些金属特性,因而现在越来越多地代替金属来做某些机械零件。
 - 目前常用的工程塑料包括聚酰胺、聚甲醛、聚碳酸酯、聚砜、聚苯醚、聚四氟乙烯等。
 - 增强塑料
在塑料中加入玻璃纤维等填料作为增强材料，以进一步改善塑料的力学性能和电性能，这种新型的复合材料通常称为增强塑料。它具有优良的力学性能，比强度和比刚度高。增强塑料分为热塑性增强塑料和热固性增强塑料。

特殊塑料
特殊塑料指具有某些特殊性能的塑料。如氟塑料、聚酰亚胺塑料、有机硅树脂、环氧树脂、导电塑料、导磁塑料、导热塑料以及为某些专门用途而改性得到的塑料。

塑料的热力学性能
塑料的物理、力学性能与温度密切相关，温度变化时塑料的受力行为发生变化，呈现出不同的物理状态，表现出分阶段的力学性能特点。塑料在受热时的物理状态和力学性能对塑料的成形加工有着非常重要的意义。

塑料的热力学性能
(1) 热塑性塑料在受热时的物理状态
热塑性塑料在受热时常存在的物理状态为玻璃态（结晶聚合物亦称结晶态）、高弹态和黏流态。图所示为线型无定型聚合物和线型结晶型聚合物受恒定压力时变形程度与温度关系的曲线，也称热力学曲线。

玻璃态
塑料在温度以下的状态是坚硬的固体，称之处于玻璃态，它是大多数塑件的使用状态。处于此状态的塑料，在外力作用下分子链只能发生很小的弹性变形（服从胡克定律）。称为玻璃化温度，是聚合物从玻璃态转变为高弹态（或高弹态转变为玻璃态）的临界温度，也是合理选择塑料的重要参数，是多数塑料使用温度的上限。聚合物在以下还存在一个脆化温度，聚合物在此温度下受力很容易断裂，所以是塑料使用的下限温度。

高弹态
当塑料受热温度超过时，由于聚合物的链段运动，塑料进入高弹态。处于这一状态的塑料类似橡胶状态的弹性体，仍具有可逆的形变性质。从图曲线可以看到，线型无定型聚合物有明显的高弹态；而从曲线可看到，线型结晶聚合物无明显的高弹态。这是因为，完
全结晶的聚合物无高弹态,或者说在高弹态温度下也不会有明显的弹性变形,但结晶型聚合物一般不可能完全结晶,都含有非结晶的部分,所以它们在高弹态温度阶段仍能产生一定程度的变形,只不过比较小而已。

当塑料受热温度超过某一温度时,由于分子链的整体运动,塑料开始有明显的流动,塑料开始进入黏流态变成黏流液体,通常也称之为熔体。塑料在这种状态下的变形不具可逆性质,一经成形和冷却后,其形状会永远保持下来。

称为黏流化温度,是聚合物从高弹态转变为黏流态(或黏流态转变为高弹态)的临界温度。当塑料继续加热至温度时,聚合物开始分解变色。称为热分解温度,是聚合物在高温下开始分解的临界温度。是塑料成形加工重要的参考温度,范围越宽,塑料成形加工就越容易进行。

<table>
<thead>
<tr>
<th>1-1</th>
<th>热固性塑料在受热时的物理状态</th>
</tr>
</thead>
<tbody>
<tr>
<td>热固性塑料在受热时伴随着化学反应,它的物理状态变化与热塑性塑料明显不同。</td>
<td></td>
</tr>
<tr>
<td>开始加热时,由于树脂是线型结构,和热塑性塑料相似,加热到一定温度时树脂分子链运动的结果使之很快由固态变成黏流态,这使它具有成形的性能。但这种流动状态存在的时间很短,很快由于化学反应的作用,分子结构变成网状,塑料硬化变成坚硬的固体。再加热分子运动仍不能恢复,化学反应继续进行,分子结构变成体型,塑料还是坚硬的固体。当温度升到一定值时,塑料开始分解。</td>
<td></td>
</tr>
</tbody>
</table>

塑料的加工工艺性

塑料在受热时的物理状态决定了塑料的成形加工性能。当温度高于某一温度时,塑料由固体状的玻璃态转变为液体状的黏流态即熔体。从开始分子热运动大大激化,材料的弹性模量降低到最低值,这时塑料熔体形变特点是,在不太大的外力作用下就能引起宏观流动,此时形变中主要是不可逆的塑性形变,冷却聚合物就能将形变永久保持下来。因此,这一温度范围常用来进行注射、挤出、吹塑和贴合等加工。

过高的温度将使塑料的黏度大大降低,不适当地增大流动性容易引起诸如注射成形中的溢料、挤出塑件的形状扭曲、收缩和纺丝过程中纤维的毛细断裂等现象。温度高到分解温度附近还会引起聚合物分解,以致降低产品物理力学性能或引起外观不良等。

不同状态下热塑性塑料的物理、工艺性能见表1-1。
1.1.4 塑料在成形过程中的流动状态

塑料熔体在简单截面导管内的流动

塑料熔体在成形过程中常常要流经各种导管(包括模具中的流道),以使其受热、受压、冷却和定型。为了更好地设计模具，制定合理的工艺条件，了解并掌握塑料熔体在导管内流动时流速与压力降的关系，以及沿着导管截面上的流速分布是很有必要的。下面简单分析塑料在圆形导管中流动液体受力分析及扁形导槽内的流动情况。

在圆形导管内的流动

为了研究塑料熔体在圆形导管内的流动状况，假设导管的半径为 R，熔体在管内做等温稳定的层流运动，且服从指数定律。取离管中心半径为 r 的流体圆柱体单元，其长度为 L，如图所示。

当它在压力 p 的作用下，由左向右移动时，在流体层间产生摩擦力，于是，其中压力降 Δp 与圆柱体截面的乘积必等于切应力 τ 与流体层间接触面积的乘积，即

$$\Delta p \cdot \pi r^2 = 2 \pi r L \cdot \tau$$

所以切应力为

$$\tau = \frac{R \Delta p}{2L}$$

在管壁处

$$r = R \quad \tau = \tau_w$$

$$\tau_w = \frac{R \Delta p}{2L}$$

$$\tau = \tau_w \frac{r}{R}$$

由此可以看出，切应力在管中心为零，逐渐增大，至管壁处为最大值 τ_w。

在扁形导槽内的流动

在等温条件下，聚合物熔体经扁形导槽(扁槽)做稳定层流运动时，其情况如图所示。

在扁槽内以中心平面为中心取一矩形单元体，其厚度为 Δr，宽度取一个单位长度，长度为 L。假定扁槽上下两面为无限宽平行面(扁槽宽度 L 应大于扁槽上下平行面距离 R 的 $\frac{1}{2}$，倍，此时扁槽两侧壁对流速的减缓作用可忽略不计)根据压力与切应力的关系，可得

$$v_r = \frac{nR}{1 + n\left(\frac{R \Delta p}{2KL}\right)^\frac{1}{n}} \left[1 - \left(\frac{r}{R}\right)^\frac{1}{n}\right]$$

式中 K——液体的稠度。
扁槽内流动液体受力分析

\[\tau = \frac{\Delta p}{L} \]

\[\tau = K \left(\frac{dv}{dy} \right)^n \]

\[\frac{dv}{dy} = \left(\frac{\tau}{K} \right)^\frac{1}{n} \]

\[v_y = \left(\frac{\Delta p}{KL} \right)^\frac{n}{n+1} \left[B^\frac{n+1}{n} - y^\frac{n+1}{n} \right] \]

塑料成形过程中的取向行为

所谓取向，就是在应力作用下聚合物分子链倾向于沿应力方向作平行排列的现象。在塑料成形中，取向可分为两种情况：

1. 注射、压注成形塑件中固体填料的流动取向
 聚合物中的固体填料也会在注射、压注成形过程中取向，而且取向方向与程度取决于浇口的形状和位置，如图所示。可以看出，填料排列的方向主要顺着流动的方向，碰到阻力（如模壁等）后，它的流动就改为与阻力成垂直的方向，并按此定型。

2. 注射、压注成形塑件中聚合物分子的流动取向
 聚合物在注射和压注成形过程中，总是存在熔体的流动。有流动就会有分子的取向。由于塑件的结构形态、尺寸和熔体在模具型腔内流动的情况不同，取向结构可分为单轴取向和多轴取向（或称平面取向），如图所示。单轴取向时，取向结构单元均沿着一个流动方向有序排列；而多轴取向时，结构单元可沿两个或两个以上流动方向有序排列。
聚合物成形时的流动取向

表1-2 列出了某些塑料试样在横直两向上的抗拉强度与伸长率。

<table>
<thead>
<tr>
<th>试样</th>
<th>抗拉强度/MPa</th>
<th>伸长率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚苯乙烯</td>
<td>20.0</td>
<td>45.0</td>
</tr>
<tr>
<td>高冲击聚苯乙烯</td>
<td>36.5</td>
<td>72.0</td>
</tr>
<tr>
<td>高密度聚乙烯</td>
<td>21.0</td>
<td>23.0</td>
</tr>
<tr>
<td>聚碳酸酯</td>
<td>29.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>65.0</td>
<td>66.5</td>
</tr>
</tbody>
</table>

各向异性有时是塑件所需要的,如制造取向薄膜与单丝等,这样能使塑件沿拉伸方向的抗拉强度与光泽度等有所增强。但对某些塑件(如厚度较大的塑件),又要力图消除这种各向异性。因为取向不一致,塑件各部分的取向程度不同,塑件在某些方向的机械强度得到提高,而另一方向的强度较低,这样会产生翘曲,使用时会断裂。

各种实验结果表明,每一种成形条件对分子定向的影响都不是单纯增加或减小。在注射、压注成形中,影响其取向的因素有以下几个方面:

1. 随着模塑温度、塑件厚度(即型腔的厚度)、充模温度的增加,分子定向程度会逐渐减弱。
2. 增加浇口长度、压力和充模时间,分子定向程度也随之增加。
3. 分子定向程度(包括填料在流动中的定向)与浇口开设的位置和形状有很大关系。为减小分子定向程度,浇口最好设在型腔深度较大的部位。

1.2 塑料工艺性能

塑料的工艺性能是塑料在成形加工过程中表现出来的特有性质,表现在许多方面,有些性能直接影响成形方法和塑件质量,同时也影响着模具的设计。下面就热塑性塑料和热固性塑料的工艺性能分别进行讨论。
1.2.1 热塑性塑料的工艺性能

塑件自模具中取出冷却到室温后，其尺寸或体积会发生收缩变化，这种性能称为收缩性。塑件成形收缩值可用收缩率表示，收缩率由于成形模具与塑料的线膨胀系数不同，可分为实际收缩率和计算收缩率两种，其计算公式如下：

\[
S' = \frac{L_c - L_s}{L_s} \times 100\% \\
S = \frac{L_m - L_s}{L_s} \times 100\%
\]

式中，

- \(S'\)——实际收缩率；
- \(S\)——计算收缩率；
- \(L_c\)——塑件在成形温度时的单向尺寸；
- \(L_s\)——塑件在室温时的单向尺寸；
- \(L_m\)——模具在室温时的单向尺寸。

实际收缩率表示塑件实际所发生的收缩。因成形温度下的塑件尺寸不便测量，以及实际收缩率与计算收缩率数值相差很小，所以模具设计时常以计算收缩率为设计参数，来计算型腔及型芯等的尺寸。但在大型、精密模具成形零件尺寸计算时则应采用实际收缩率。

引起塑件收缩的原因除了热胀冷缩、脱模时的弹性恢复及塑性变形等原因产生的尺寸线收缩外，还会按塑件形状、料流方向及成形工艺参数的不同产生收缩方向性。此外，塑件脱模后残余应力的缓慢释放和必要的后处理工艺也会使塑件产生后收缩。影响塑件成形收缩的因素主要有：

- (1) 材料品种
 各种塑料都有其各自的收缩率范围，同一种塑料由于相对分子质量、填料及配比等不同，其收缩率及各向异性也不同。

- (2) 塑件结构
 塑件的形状、尺寸、壁厚、有无嵌件、嵌件数量及布局等对收缩率有很大影响，如塑件壁厚收缩率大，有嵌件收缩率小，等等。

- (3) 模具结构
 模具的分型面、加压方向、浇注系统形式、布局及尺寸等对收缩率及方向性影响也很大，尤其是挤出和注射成形更为明显。

- (4) 成形工艺
 挤出成形和注射成形一般收缩率较大，方向性也很明显。塑料的装料形式、预热情况、成形温度、成形压力、保压时间等对收缩率及方向性都有较大影响。例如采用压锭加料，进行预热，采用较低的成形温度、较高的成形压力，延长保压时间等均是减小收缩率及方向性的有效措施。

由上述分析可知，影响收缩率大小的因素很多。收缩率不是一个固定值，而是在一定范围内变化。收缩率的波动将引起塑件尺寸波动，因此模具设计时应根据以上因素综合考虑选择塑料。
料的收缩率，对精度高的塑件应选取收缩率波动范围小的塑料，并留有试模后修正的余地。

流动性

在成形过程中，塑料熔体在一定的温度、压力下填充模具型腔的能力称为塑料的流动性。

塑料流动性差，就不容易充满型腔，易产生缺料或熔接痕等缺陷，因此需要较大的成形压力才能成形。相反，塑料的流动性好，可以用较小的成形压力充满型腔。但流动性太好，会在成形时产生严重的溢边。

流动性的大小与塑料的分子结构有关。具有线型分子而没有或很少有交联结构的树脂流动性大。塑料中加入填料，会降低树脂的流动性，而加入增塑剂或润滑剂，则可增加塑料的流动性。

热塑性塑料流动性可用相对分子质量大小、熔体指数、螺旋线长度、表观黏度及流动比（流程长/塑件壁厚）等一系列指数进行分析。相对分子质量小、熔体指数高、螺旋线长度长、表观黏度小、流动比大的流动性好。热塑性塑料的流动性分为三类：流动性好的，如聚乙烯、聚丙烯、聚苯乙烯、醋酸纤维素等；流动性中等的，如改性聚苯乙烯、聚甲基丙烯酸甲酯、聚甲醛、氯化聚醚等；流动性差的，如聚碳酸酯、硬聚氯乙烯、聚苯醚、聚砜、氟塑料等。

影响流动性的因素主要有：

1. 温度

料温高，则流动性大，但不同塑料各有差异。聚苯乙烯、聚丙烯、聚酰胺、聚甲基丙烯酸甲酯、聚碳酸酯、醋酸纤维素等塑料流动性随温度变化的影响较大；而聚乙烯、聚甲醛的流动性受温度变化的影响较小。

2. 压力

注射压力增大，则熔料受剪切作用大，流动性也增大，尤其是聚乙烯、聚甲醛较为敏感。

3. 模具结构

浇注系统的形式、尺寸、布置（如型腔表面粗糙度、浇道截面厚度、型腔形式、排气系统）、冷却系统设计、熔料流动阻力等因素都直接影响熔料的流动性。

凡促使熔料温度降低、流动阻力增大的因素（如塑件壁厚太薄，转角处采用尖角等），流动性就会降低。

相容性

相容性是指两种或两种以上不同品种的塑料，在熔融状态下不产生相分离现象的能力。如果两种塑料不相容，则混熔时制件会出现分层、脱皮等表面缺陷。不同塑料的相容性与其分子结构有一定关系，分子结构相似者较易相容，例如高压聚乙烯、低压聚乙烯、聚丙烯彼此之间的混熔等；分子结构不同时较难相容，例如聚乙烯和聚苯乙烯之间的混熔。塑料的相容性又俗称为共混性。

通过塑料的这一性质，可以得到类似共聚物的综合性能，是改进塑料性能的重要途径之一。例如聚碳酸酯和ABS相容，就能改善聚碳酸酯的工艺性。

吸湿性和热敏性

吸湿性是指塑料对水分的亲疏程度。据此塑料大致可分为两类：一类是具有吸湿或黏附水分的塑料。
0. 5% ~ 0. 2% ABS 0. 2% 0.

1. 2. 2

1. 1.

2.

3.

4.
放出的低分子挥发物较多时，收缩率较大；放出的低分子挥发物较少时，收缩率较小。在同类塑料中，填料含量较多或填料中无机填料增多时，收缩率较小。

凡有利于提高成形压力，增大塑料充模流动性，使塑件密实的模具结构，均能减少塑件的收缩率，例如用压缩或压注成形的塑件比注射成形的塑件收缩率小。凡能使塑件密实，成形前使低分子挥发物溢出的工艺因素，都能使塑件收缩率减小，例如成形前对酚醛塑料的预热、加压等。

流动性

流动性的意义与热塑性塑料流动性类同，但热固性塑料通常以拉西格流动性来表示，其测定原理如图所示，将一定质量的欲测塑料预压成圆锭，将圆锭放入压模中，在一定温度和压力下，测定它从模孔中挤出的长度（毛糙部分不计在内），此即拉西格流动性，其数值大则流动性好。

每一品种塑料的流动性可分为三个不同等级：拉西格流动值为1.0 ～ 1.8，用于压制无嵌件、形状简单、厚度一般的塑件；拉西格流动值为1.8 ～ 2.5，用于压制中等复杂程度的塑件；拉西格流动值为2.5 ～ 3.0，用于压制结构复杂、型腔很深、嵌件较多的薄壁塑件或用于压注成形。

比体积（比容）与压缩率

比体积是单位质量的松散塑料所占的体积；压缩率为塑料与塑件两者体积或比体积之比值，其值恒大于1。比体积与压缩率均表示粉状或短纤维塑料的松散程度，可用来确定压缩模加料腔容积的大小。比体积和压缩率较大时，则要求加料腔体积大，同时也说明塑料充气多，排气困难，成形周期长，生产率低；比体积和压缩率较小时，有利于压锭和压缩、压注。但比体积太小，则以容积法装料则会造成加料量不准确。各种塑料的比体积和压缩率是不同的，同一种塑料，其比体积和压缩率又与塑料形状、颗粒度及其均匀性不同而异。

水分和挥发物含量

热固性塑料中的水分和挥发物来自两方面，一是塑料生产过程遗留下来及成形前在运输、储存时吸收的；二是成形过程中化学反应产生的副产物。若成形时塑料中的水分和挥发物过多又处理不及时，则会产生如下问题：流动性增大、易产生溢料，成形周期长，收缩率大，塑件易产生气泡、组织疏松、翘曲变形、波纹等缺陷。此外，有的气体对模具有腐蚀作用，对人体有刺激作用，因此必须采取相应措施，消除或抑制有害气体的产生，包括采取成形前对物料进行预热干燥处理、在模具中开设排气槽或压制操作时设排气工步、模具表面镀铬等措施。
1.3 常用塑料

1.3.1 聚乙烯（PE）

1. 基本特性

聚乙烯塑料的产量为塑料工业之冠，其中以高压聚乙烯的产量最大。聚乙烯树脂为无毒、无味，呈白色或乳白色，柔软、半透明的大理石状粒料，密度为0.91～0.96 g/cm³。为结晶型塑料。

聚乙烯按聚合时所采用压力的不同，可分为高压、中压和低压聚乙烯。高压聚乙烯的分子结构不是单纯的线型，而是带有许多支链的树枝状分子。因此它的结晶度不高（结晶度仅为60%～70%），密度较低，相对分子质量较小，常称为低密度聚乙烯。它的耐热性、硬度、机械强度等都较低。但是它的介电性能好，具有较好的柔软性、耐冲击性及透明性，成形加工性能也较好。

中、低压聚乙烯的分子结构是支链很少的线型分子，其相对分子质量、结晶度较高（高达106～107），密度大，相对分子质量大，常称为高密度聚乙烯。它的耐热性、硬度、机械强度等都较高，但柔软性、耐冲击性及透明性、成形加工性能都较差。

聚乙烯的吸水性极小，且介电性能与温度、湿度无关。因此，聚乙烯是最理想的高频电绝缘材料，在介电性能上只有聚苯乙烯、聚异丁烯及聚四氟乙烯可与之相比。

2. 主要用途

低压聚乙烯可用于制造塑料管、塑料板、塑料绳以及承载不高的零件，如齿轮、轴承等；中压聚乙烯最适宜的成形方法有高速吹塑成形，可制造瓶类、包装用的薄膜以及各种注射成形制品和旋转成形制品，也可用在电线电缆上面；高压聚乙烯常用于制作塑料薄膜（理想的包装材料）、软管、塑料瓶以及电气工业的绝缘零件和电缆外皮等。

3. 成形特点

成形收缩率范围及收缩值大，方向性明显，容易变形、翘曲。应控制模温，保持冷却均匀、稳定；流动性好且对压力变化敏感；宜用高压注射，料温均匀，填充速度应快，保压充分；冷却速度慢，因此必须充分冷却，模具应设有冷却系统；质软易脱模，塑件有浅的侧凹槽时可强行脱模。

1.3.2 聚丙烯（PP）
一体铰链（盖和本体合一的各种容器），经过多次开闭弯折未产生损坏和断裂现象。聚丙烯熔点为**80℃**，耐热性好，能在**120℃**以上的温度下进行消毒灭菌。其低温使用温度达**−15℃**，低于**−35℃**时会脆裂。聚丙烯的高频绝缘性能好，而且由于其不吸水，绝缘性能不受湿度的影响，但在氧、热、光的作用下极易解聚、老化，所以必须加入防老化剂。

主要用途

聚丙烯可用做各种机械零件如法兰、接头、泵叶轮、汽车零件和自行车零件；可作为水、蒸汽、各种酸碱等的输送管道，化工容器和其他设备的衬里、表面涂层；可制造盖和本体合一的箱壳，各种绝缘零件，并用于医药工业中。

成形特点

成形收缩范围及收缩率大，易发生缩孔、凹痕、变形，方向性强；流动性极好，易于成形；热容量大，注射成形模具必须设计能充分进行冷却的冷却回路，注意控制成形温度。料温低时方向性明显，尤其是低温、高压时更明显。聚丙烯成形的适宜模温为**80℃**左右，不可低于**70℃**，否则会造成成形塑件表面光泽差或产生熔接痕等缺陷。温度过高会产生翘曲和变形。

聚氯乙烯（PVC）

<table>
<thead>
<tr>
<th>基本特性</th>
<th>主要用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚氯乙烯是世界上产量最高的塑料品种之一。其原料来源丰富，价格低廉，性能优良，应用广泛。其树脂为白色或浅黄色粉末，形同面粉，造粒后为透明块状，类似明矾。根据不同的用途加入不同的添加剂，聚氯乙烯塑件可呈现不同的物理性能和力学性能。在聚氯乙烯树脂中加入适量的增塑剂，可制成多种硬质、软质制品。纯聚氯乙烯的密度为1.4 g/cm³，加入了增塑剂和填料等的聚氯乙烯塑件的密度范围一般为1.15 ~ 2.00 g/cm³。</td>
<td>由于聚氯乙烯的化学稳定性高，所以可用于制作防腐管道、管件、输油管、离心泵和鼓风机等。聚氯乙烯的硬板广泛用于化学工业上制作各种贮槽的衬里、建筑物的瓦楞板、门窗结构、墙壁装饰物等建筑用材。由于电绝缘性能良好，可在电气、电子工业中用于制造插座、插头、开关和电缆。在日常生活中，用于制造凉鞋、雨衣、玩具和人造革等。</td>
</tr>
<tr>
<td>硬聚氯乙烯不含或含有少量增塑剂。它的机械强度颇高，有较好的抗拉、抗弯、抗压和抗冲击性能，可单独用做结构材料；其介电性能好，对酸碱的抵抗能力极强，化学稳定性好；但成形比较困难，耐热性不高。</td>
<td></td>
</tr>
</tbody>
</table>
4. 聚苯乙烯 (PS)

- 基本特性
 - 聚苯乙烯是仅次于聚氯乙烯和聚乙烯的第三大塑料品种。聚苯乙烯无色、透明、有光泽、无毒无味,落地时发出清脆的金属声,密度为 1.054 g/cm³。聚苯乙烯是目前最理想的高频绝缘材料,可以与熔融的石英相媲美。
 - 它的化学稳定性良好,能耐碱、硫酸、磷酸、盐酸、稀醋酸及其他有机酸,但不耐硝酸及氧化剂的作用,对水、乙醇、汽油、植物油及各种盐溶液也有足够的抗腐蚀能力。它的耐热性低,只能在不高的温度下使用,质地硬而脆,塑件由于内应力而易开裂。聚苯乙烯的透明性很好,透光率很高,光学性能仅次于有机玻璃。它的着色能力优良,能染成各种鲜艳的色彩。
 - 为了提高聚苯乙烯的耐热性和降低其脆性,常用改性聚苯乙烯和以聚苯乙烯为基体的共聚物,从而大大扩大了聚苯乙烯的用途。

- 主要用途
 - 聚苯乙烯在工业上可用做仪表外壳、灯罩、化学仪器零件、透明模型等;在电气方面用做良好的绝缘材料、接线盒、电池盒等;在日用品方面广泛用于包装材料、各种容器、玩具等。

5. 丙烯腈-丁二烯-苯乙烯共聚物 (ABS)

- 基本特性
 - 是丙烯腈、丁二烯、苯乙烯三种单体的共聚物,价格便宜,原料易得,是目前产量最大、应用最广的工程塑料之一。
 - 无毒、无味,为呈微黄色或白色不透明粒料,成形的塑件有较好的光泽,密度为 1.02 ~ 1.05 g/cm³。
 - ABS 是由于三种组分组成的,故它有三种组分的综合力学性能,而每一组分又在其中起着固有的作用。丙烯腈使 ABS 具有良好的表面硬度、耐热性及耐化学腐蚀性,丁二烯使 ABS 坚韧,苯乙烯使它有优良的成形加工性和着色性能。
 - ABS 的热变形温度比聚苯乙烯、聚氯乙烯、尼龙等都高,尺寸稳定性较好,具有一定的化学稳定性和良好的介电性能,经过调色可配成任何颜色。其缺点是耐热性不高,连续工作温度为 70 °C ~ 93 °C,热变形温度约为 10% ~ 30% 的 ABS 与 ABS

- 主要用途
 - ABS 在机械工业上用来制造齿轮、泵叶轮、轴承、把手、管道、电机外壳、仪表壳、仪表...
常用的塑料

1. PA6

PA6是一种性能优良的热塑性工程塑料，其性能不亚于尼龙，而价格却比尼龙低廉。PA6树脂为白色粉末，经造粒后为淡黄或白色，半透明有光泽的硬粒。常用来制作各种机械、化学和电器零件，如轴承、齿轮、滚子、辊轴、滑轮、泵叶轮、风扇叶片、蜗轮、高压密封扣圈、垫片、阀座、输油管、储油容器、绳索、传动带、电池箱、电器线圈等零件，还可将粉状尼龙热喷到金属零件表面上，以提高耐磨性或作为修复磨损零件之用。

2. PA66

PA66是一种性能优良的热塑性工程塑料，其性能不亚于尼龙，而价格却比尼龙低廉。PA66树脂为白色粉末，经造粒后为淡黄或白色，半透明有光泽的硬粒。常用来制作各种机械、化学和电器零件，如轴承、齿轮、滚子、辊轴、滑轮、泵叶轮、风扇叶片、蜗轮、高压密封扣圈、垫片、阀座、输油管、储油容器、绳索、传动带、电池箱、电器线圈等零件，还可将粉状尼龙热喷到金属零件表面上，以提高耐磨性或作为修复磨损零件之用。

3. POM

POM是一种性能优良的热塑性工程塑料，其性能不亚于尼龙，而价格却比尼龙低廉。POM树脂为白色粉末，经造粒后为淡黄或白色，半透明有光泽的硬粒。常用来制作各种机械、化学和电器零件，如轴承、齿轮、滚子、辊轴、滑轮、泵叶轮、风扇叶片、蜗轮、高压密封扣圈、垫片、阀座、输油管、储油容器、绳索、传动带、电池箱、电器线圈等零件，还可将粉状尼龙热喷到金属零件表面上，以提高耐磨性或作为修复磨损零件之用。
聚甲醛有较高的抗拉、抗压性能和突出的耐疲劳强度,特别适合于用做长时间反复承受外力的齿轮材料；聚甲醛尺寸稳定、吸水率小,具有优良的减摩、耐磨性能；能耐扭变,有突出的回弹能力,可用于制造塑料弹簧制品；常温下一般不溶于有机溶剂,能耐醛、酯、醚、烃及弱酸、弱碱,耐汽油及润滑油性能也很好,但不耐强酸；有较好的电气绝缘性能。

聚甲醛的缺点是成形收缩率大,在成形温度下的热稳定性较差。

主要用途

聚甲醛特别适合于制作轴承、凸轮、滚轮、辊子、齿轮等耐磨传动零件,还可用于制造汽车仪表板、汽化器、各种仪器外壳、罩盖、箱体、化工容器、泵叶轮、鼓风机叶片、配电盘、线圈座、各种输油管、塑料弹簧等。

成形特点

聚甲醛的收缩率大;它的熔融温度范围小,热稳定性差,因此过热或在允许温度下长时间受热,均会引起分解,分解产物甲醛对人体和设备都有害。聚甲醛的熔融或凝固十分迅速,熔融速度快有利于成形,缩短成形周期,但凝固速度快会使熔料结晶化速度快,塑件容易产生熔接痕等表面缺陷。所以,注射速度要快,注射压力不宜过高。其摩擦系数低、弹性高,浅侧凹槽可采用强制脱出,塑件表面可带有皱纹花样。

聚碳酸酯

基本特性

聚碳酸酯为无色透明粒料,密度为1.18~1.20 g/cm³。聚碳酸酯是一种性能优良的热塑性工程塑料,韧而刚,抗冲击性在热塑性塑料中名列前茅;成形零件可达到很好的尺寸精度并在很宽的温度范围内保持其尺寸的稳定性;成形收缩率恒定为0.001%;抗蠕变、耐磨、耐热、耐寒;脆化温度在−100°C以下,长期工作温度达120°C;聚碳酸酯吸水率较低,能在较宽的温度范围内保持较好的电性能。聚碳酸酯是透明材料,可见光的透光率接近90%。

其缺点是耐疲劳强度较差,成形后塑件的内应力较大,容易开裂。用玻璃纤维增强聚碳酸酯则可克服上述缺点,使聚碳酸酯具有更好的力学性能,更好的尺寸稳定性,更小的成形收缩率,并可提高耐热性和耐药性,降低成本。

主要用途

在机械上主要用做各种齿轮、蜗轮、蜗杆、齿条、凸轮、轴承、各种外壳、盖板、容器、冷冻和冷却装置零件等。在电气方面,用做电机零件、风扇部件、拨号盘、仪表壳、接线板等。聚碳酸酯还可制作照明灯、高温透镜、视孔镜、防护玻璃等光学零件。

成形特点

虽然吸水性小,但高温时对水分比较敏感,会出现银丝、气泡及强度下降现象,所以加工前必须干燥处理,而且最好采用真空干燥法;熔融温度高,熔体黏度大,流动性差,所以成形时要求有较高的温度和压力;熔体黏度对温度十分敏感,一般用提高温度的方法来增加熔融塑料的流动性。
性是有机玻璃的特性，透光率达92%，优于普通硅玻璃。有机玻璃密度为1.18 g/cm³，比普通硅玻璃轻一半。机械强度为普通硅玻璃的2倍以上；它轻而坚韧，容易着色，有较好的电气绝缘性能；化学性能稳定，能耐一般的化学腐蚀，但能溶于芳烃、氯代烃等有机溶剂；在一般条件下尺寸较稳定。有机玻璃可制成棒、管、板等型材，供二次加工成塑件；也可制成粉状物，供成形加工。其最大缺点是表面硬度低，容易被硬物擦伤拉毛。

主要用途
有机玻璃主要用于制造要求具有一定透明度和强度的防震、防爆和观察等方面的零件，如飞机和汽车的窗玻璃、飞机罩盖、油杯、光学镜片、透明模型、透明管道、车灯灯罩、油标及各种仪器零件，也可用做绝缘材料、广告铭牌等。

成形特点
为了防止塑件产生气泡、混浊、银丝和发黄等缺陷，影响塑件质量，原料在成形前要很好地干燥；为了得到良好的外观质量，防止塑件表面出现流动痕迹、熔接线痕和气泡等不良现象，一般采用尽可能低的注射速度；模具浇注系统对料流的阻力应尽可能小，并应制出足够的脱模斜度。

热固性塑料
酚醛塑料
基本特性
酚醛塑料是一种产量较大的热固性塑料，它是以酚醛树脂为基础而制得的。酚醛树脂本身很脆，呈琥珀玻璃态，必须加入各种纤维或粉末状填料后才能获得具有一定性能要求的酚醛塑料。酚醛塑料大致可分为四类：
1. 层压塑料；
2. 热压塑料；
3. 纤维状压塑料；
4. 碎屑状压塑料。
酚醛塑料与一般热塑性塑料相比，刚性好，变形小，耐热耐磨，能在-150℃～200℃的温度范围内长期使用；在水润滑条件下，有极低的摩擦系数；其电绝缘性能优良。酚醛塑料的缺点是质脆，抗冲击强度差。

主要用途
酚醛层压塑料用浸渍过酚醛树脂溶液的片状填料制成，可制成各种型材和板材。根据所用填料不同，有纸质、布质、木质、石棉和玻璃布等各种层压塑料。布质及玻璃布酚醛层压塑料有优良的力学性能、耐油性能和一定的介电性能，可用于制造齿轮、轴瓦、导向轮、无声齿轮、轴承及用于电工结构材料和电气绝缘材料；木质层压塑料适用于制作水润滑冷却下的轴承及齿轮等；石棉布层压塑料主要用于高温下工作的零件。

酚醛纤维状压塑料可以加热模压成各种复杂的机械零件和电器零件，具有优良的电气绝缘性能，耐热、耐水、耐磨，可制作各种线圈架、接线板、电动工具外壳、风扇叶子、耐酸泵叶轮、齿轮和凸轮等。

成形特点
成形性能好，特别适用于压缩成形；模温对流动性影响较大，一般当温度超过160℃时流动性迅速下降；硬化时放出大量热，厚壁大型塑件内部温度易过高，发生硬化不均及过热。
环氧树脂

环氧树脂是含有环氧基的高分子化合物。未固化之前，它是线型的热塑性树脂，只有在加入固化剂（如胺类和酸酐等化合物）交联成不熔的体型结构的高聚物之后，才有作为塑料的实际应用价值。

环氧树脂种类繁多，应用广泛，有许多优良的性能，其最突出的特点是黏结能力很强，是人们熟悉的“万能胶”主要成分。此外，环氧树脂还耐化学药品、耐热，电气绝缘性能良好，收缩率小，比酚醛树脂有较好的力学性能。其缺点是耐气候性差，耐冲击性低，质地脆。

主要用途
环氧树脂可用做金属和非金属材料的黏合剂，用于封装各种电子元件，配以石英粉等能浇铸各种模具，还可以作为各种产品的防腐涂料。

成形特点
流动性好，硬化速度快；环氧树脂热刚性差，硬化收缩小，难于脱模，浇注前应加脱模剂；固化时不析出任何副产物，成形时不需排气。

氨基塑料
氨基塑料是由氨基化合物与醛基（主要是甲醛）经缩聚反应而制得的塑料，主要包括脲甲醛塑料、三聚氰胺甲醛塑料。

氨基塑料的基本特性及主要用途

脲甲醛塑料是脲甲醛树脂和漂白纸浆等制成的压塑粉。脲甲醛塑料可染成各种鲜艳的色彩，外观光亮，部分透明，表面硬度较高，耐电弧性能好，耐矿物油、耐霉菌，但其耐水性较差，在水中长期浸泡后电气绝缘性能下降。

脲甲醛塑料大量用于压制日用品及电气照明用设备的零件、电话机、收录机、钟表外壳、开关插座及电气绝缘零件。

三聚氰胺甲醛塑料由三聚氰胺甲醛树脂与石棉滑石粉等制成，也称为密胺塑料。三聚氰胺甲醛塑料可染上各种色彩，制成耐光、耐电弧、无毒的塑料，其在的温度范围内性能变化小，能耐沸水而且耐茶、咖啡等污染性强的物质，能像陶瓷一样方便地去除茶渍一类的污染物，且有重量轻、不易碎的特点。

密胺塑料主要用于制作餐具、航空茶杯及电器开关、灭弧罩及防爆电器的配件。

氨基塑料的成形特点
氨基塑料常用压缩、压注成形。在压注成形时收缩率大，含水分及挥发物多，所以使用前需预热干燥；由于密胺塑料在成形时有弱酸性分解及水分析出，故模具应镀铬防腐，并注意排气；由于流动性好，硬化速度快，因此预热及成形时温度要适当，装料、合模及加工速度要快；带嵌件的密胺塑料塑件易产生应力集中，故尺寸稳定性差。
1.4 塑料成形工艺

1.4.1 注射成形工艺及特点

注射成形又称注射模塑,是热塑性塑料制件的一种主要成形方法。除氟塑料外,几乎所有热塑性塑料都可用此方法成形。近年来,注射成形已成功地用来成形某些热固性塑料制件。

注射成形的原理是将颗粒状态或粉状塑料从注射机的料斗送进加热的料筒中,经过加热熔融塑化成为黏流态熔体,在注射机柱塞或螺杆的高压推动下,以很高的流速通过喷嘴,注入模具型腔,经一定时间的保压冷却定型后可保持模具型腔所赋予的形状,然后开模分型获得成形塑件。这样就完成了一次注射工作循环,如图所示。

![注射成形工艺示意图](attachment:image.png)
注射成形的特点是：成形周期短，能一次成形外形复杂、尺寸精密、带有嵌件的塑料制件；对各种塑料的适应性强；生产效率高，产品质量稳定，易于实现自动化生产。所以，注射成形广泛地用于塑料制件的生产中，但注射成形的设备及模具制造费用较高，不适合单件及批量较小的塑料制件的生产。

注射成形工艺过程

成形前的准备

为使注射过程能顺利进行并保证塑料制件的质量，在成形前应进行一系列必要的准备工作。

1. 原料外观的检验和工艺性能的测定
 检验内容包括对色泽、粒度及均匀性、流动性（熔体指数、黏度）、热稳定性及收缩率的检验。

2. 物料的预热和干燥
 对于吸水性强的塑料，在成形前必须进行干燥处理，除去物料中过多的水分和挥发物，以防止成形后塑件表面出现斑纹和气泡等缺陷，甚至发生降解，严重影响塑料制件的外观和内在质量。

各种物料干燥的方法应根据塑料的性能和生产批量等条件进行选择。小批量生产用塑料多数采用热风循环烘箱或红外线加热烘箱进行干燥；大批量生产用塑料宜采用沸腾干燥或真空干燥，其效率较高。

3. 嵌件的预热
 在成形带金属嵌件，特别是带较大嵌件的塑件时，嵌件放入模具之前必须预热，以减少物料和嵌件的温度差，降低嵌件周围塑料的收缩应力，保证塑件质量。

4. 料筒的清洗
 当改变产品、更换原料及颜色时均需清洗料筒。通常，柱塞式料筒可拆卸清洗，而螺杆式料筒可采用对空注射法清洗。

5. 脱模剂的选用
 塑料制件的脱模，主要依赖于合理的工艺条件和正确的模具设计。在生产上为顺利脱模，通常使用脱模剂。常用的脱模剂有硬脂酸锌（除聚酰胺外，各种塑料均可使用）、液态石蜡（白油）（适用于聚酰胺）和硅油（润滑效果好，但价格较贵，使用也较麻烦）等。

注射成形过程

完整的注射成形过程包括加料、加热塑化、加压注射、保压、冷却定型、脱模等工序。但从实质上讲主要是塑化、注射充模和冷却定型等基本过程。

1. 塑化
 塑化是指粉状或粒状的物料，在料筒内加热熔融呈黏流态并具有良好的可塑性的全过程。对塑化的要求是：塑料在进入模腔之前，既要达到规定的成形温度，又要使熔体各点温度均匀一致，并能在规定时间内提供上述质量的足够熔融塑料以保证生产连续顺利地进行。

2. 注射充模与冷却定型
 在这个过程中塑料熔料的温度将不断下降，而压力的变化则如图所示。

 充模
 塑化好的塑料熔体在注射机柱塞或螺杆的推动作用下，以一定的压力和速度经过喷嘴和模具的浇注系统进入并充满模具型腔，这一阶段称为充模。这一阶段的时间从开始充模到
注射成形过程中塑料压力的变化

图1.10 保压补缩

这一阶段是从熔体充满型腔时起至柱塞或螺杆退
回时为止。在注射机柱塞或螺杆推动下,熔体仍
持压力进行补料,使料筒中的熔料继续进入型
腔,以补充型腔中塑料的收缩需要。在这段时间
内,模腔内熔体压力仍为最大值。保压补缩阶段
对于提高塑件密度,减少塑件的收缩,克服塑件
表面缺陷均具有重要影响。

图1.10 倒流阶段

这一阶段是从柱塞或螺杆开始后退时起至浇口
处熔体冻结时为止。这时模腔中的熔料压力比
浇口前方的高,因此就会发生型腔中熔体通过
浇口流向浇注系统的倒流现象,从而使模腔内
压力迅速下降。倒流将一直进行到浇口处熔料
冻结时为止,为浇口冻结时的压力。如果柱
塞或螺杆后退时浇口处的熔料已经冻结,或者在
喷嘴中装有止逆阀,则倒流阶段不存在,就不
会出现压力下降的曲线,而是图

图1.10 浇口冻结后的冷却

这一阶段是从浇口处塑料完全冻结起到制件脱
模取出时为止。这时,倒流不再继续进行,模
腔内的塑料继续冷却并凝固定型。脱模时,塑
件应具有足够的刚度,不致产生翘曲或变形。在冷
却阶段中,随着温度的迅速下降,模腔内的塑料体
积收缩,压力也逐渐下降。开模时,模腔内的
压力不一定等于外界大气压。模腔内压力与外界
压力之差称为残余压力(即图

图1.10 退火处理

退火热处理是将塑件在定温的加热液体介质(如热水、热的矿物油、甘油、乙二醇和液体石
蜡等)或热空气循环烘箱中静置一段时间,然后缓慢冷却至室温,从而消除塑件的内应力,提
高塑件的性能。退火的温度应控制在塑件使用温度以上,或塑料的热变形温度一下。退火处
理的时间取决于塑料品种、加热介质温度、塑件的形状和成形条件。退火处理后冷却速度不
能太快,以避免重新产生内应力。退火处理消除了塑件的内应力,稳定了尺寸,对于结晶型塑
料还能提高结晶度、稳定结晶结构,从而提高其弹性模量和硬度,但却降低了断裂伸长率。
调湿处理是将刚脱模的塑件放入热水中，以隔绝空气，防止对塑料制件的氧化，加快吸湿平衡速度的后处理方法。其目的是使制件颜色、性能以及尺寸保持稳定，防止塑件使用中尺寸变化，制品尽快达到吸湿平衡。调湿处理主要用于吸湿性强的聚酰胺等塑件。

注射成形工艺参数

正确的注射成形工艺可以保证塑料熔体良好塑化，顺利充模、冷却与定型，从而生产出合格的塑料制件。温度、压力和时间是影响注射成形工艺的重要参数。

温度

在注射成形中需控制的温度有料筒温度、喷嘴温度和模具温度等。前两种温度主要影响塑料的塑化和流动，而后一种温度主要是影响塑料的充模和冷却定型。

料筒温度

料筒温度的选择与诸多因素有关，主要有以下几方面：

1. 塑料的黏流温度或熔点

不同塑料，其黏流温度或熔点是不同的，对于非结晶型塑料，料筒末端最高温度应高于黏流温度（）；对于结晶型塑料应高于熔点（）。但不论非结晶型或结晶型塑料，料筒温度均不能超过塑料本身的分解温度（）。也就是说，料筒温度应控制在黏流温度（或熔点）与分解温度之间（）。除了严格控制最高温度外，还应控制塑料在加热筒中停留的时间，因为停留时间过长（即使在温度不十分高的情况下）塑料也会发生降解。

2. 注射机类型

在柱塞式注射机中，塑料的加热仅靠料筒壁和分流梭表面传热，而且料层较厚，升温较慢。因此，料筒温度应高些，以使塑料内外层受热、塑化均匀。对于螺杆式注射机，由于螺杆转动的搅动，同时使物料受高剪切作用，物料自身摩擦生热，使传热加快，因此料筒温度可以低于柱塞式。

3. 塑件及模具结构特点

对于薄壁制件，其相应的模腔狭窄，熔体充模的阻力大，冷却快，为了提高熔体流动性，使其顺利充模，料筒温度应选择高一些。相反，注射厚壁制件时，料筒温度可选择低一些。对于形状复杂或带有嵌件的制件，或者熔体充模流程曲折较多、较长的，料筒温度也应选择高一些。料筒温度的分布，一般从料斗一侧起至喷嘴是逐步升高的，以利于塑料逐步均匀塑化。

喷嘴温度

喷嘴温度通常略低于料筒最高温度，这是为了防止熔料在喷嘴处产生流涎现象。喷嘴低温产生的影响可从熔料注射时所产生的摩擦得到一定程度的补偿。但是，喷嘴温度不能过低，否则熔料在喷嘴处会出现早凝而将喷嘴堵塞，或者有早凝料注入模腔而影响塑件的质量。料筒温度和喷嘴温度的最佳值一般通过试模来确定。

模具温度

模具温度对塑料熔体在型腔内的流动和塑料制品的内在性能与表面质量影响很大。模具温度的高低决定于塑料的特性、塑件尺寸与结构、性能要求及其他工艺条件等。模具温度由通入定温的冷却介质来控制，也有的靠熔料注入模具自然升温和自然散热达到平衡而保持一定的模温。在特殊情况下，可采用电阻加热圈和加热棒对模具加热而保持定温。
不管是加热或冷却,对塑料熔体来说进行的都是冷却降温过程,以使塑件成形和脱模。

压力

注射成形过程中的压力包括塑化压力和注射压力,它们关系到塑化和成形的质量。

(1) 塑化压力
塑化压力是指采用螺杆式注射机时,螺杆顶部熔体在螺杆旋转后退时所受的压力,亦称背压,其大小可以通过液压系统中的溢流阀来调整。

塑化压力大小对熔体实际温度、塑化效率及成形周期等均有影响。在其他条件相同的情况下,增加塑化压力,会提高熔体的温度及其均匀性,使色料的混合均匀并排出熔体中的气体。但增加塑化压力会降低塑化速率,从而延长成形周期,而且增加了塑料分解的可能性。所以,塑化压力应在保证塑件质量的前提下越低越好,其具体数值是随所用塑料的品种而异的,通常不超过2 MPa。

(2) 注射压力
注射机的注射压力指柱塞或螺杆顶部对塑料熔体所施加的压力。其作用是克服熔体流动充模过程中的流动阻力,使熔体具有一定的充模速率及对熔体进行压实。

注射压力的大小取决于注射机的类型、塑料的品种、模具结构、模具温度、塑件的壁厚及流程的大小等,尤其是浇注系统的结构和尺寸。对于熔体黏度高的塑料,其注射压力应比黏度低的塑料高;对薄壁、面积大、形状复杂及成形时熔体流程长的塑件,注射压力也应该高;模具结构简单、浇口尺寸较大的,注射压力可以较低;对于柱塞式注射机,因料筒内压力损失较大,故注射压力应比螺杆式注射机的高;料筒温度高、模具温度高的,注射压力也可以较低。

型腔充满后,注射压力的作用在于对模内熔料的压实。在生产中,压实时的压力等于或小于注射时所用的注射压力。如果注射时和压实时的压力相等,则往往可以使塑件的收缩率减小,并且尺寸稳定性及力学性能较好。缺点是会造成脱模时的残余压力过大、塑件脱模困难和成形周期长。

时间(成形周期)

完成一次注射成形所需要的时间,称为成形周期,它是决定注射成形生产率及塑件质量的一个重要因素。它包括以下几部分:

成形周期

1. 注射时间 充模时间(柱塞或螺杆前进时间)
2. 保压时间(柱塞或螺杆停留在前进位置的时间)
3. 闭模冷却时间(柱塞后退或螺杆转动后退的时间均包括在这段时间内)
4. 其他时间(指开模、脱模涂拭脱模剂、安放嵌件和闭模等时间)

成形周期直接影响生产效率和设备利用率,应在保证产品质量的前提下,尽量缩短成形周期中各阶段的时间。在整个成形周期中,注射时间和冷却时间是基本组成部分,注射时间和冷却时间的长短对塑料制品的质量有决定性影响。注射时间中的充模时间不长,一般不超过10 s;保压时间较长,一般为20 ～ 120 s;闭模冷却时间一般为5 ～ 10 min;其它时间一般为30 ～ 120 min。通常以塑料制品收缩率最小为保压时间的最佳值。

冷却时间主要决定于塑料制品的壁厚、模具温度、塑料的热性能和结晶性能。冷却时间的长短应以保证塑料制品脱模时不引起变形为原则,一般为10 ～ 30 min。此外,在成形过程中应尽可能缩短开模、脱模等其他时间,以提高生产率。

常用热塑性塑料注射成形的工艺参数见表1-4。
<table>
<thead>
<tr>
<th>项目</th>
<th>塑 料</th>
<th>低 压聚乙烯 (LDPE)</th>
<th>高 压聚乙烯 (HDPE)</th>
<th>乙丙共聚 PP</th>
<th>聚丙烯 PP</th>
<th>玻璃纤维增强 PP</th>
<th>高聚氯乙烯 (PVC)</th>
<th>硬聚氯乙烯 (PVC)</th>
<th>聚苯乙烯 (PS)</th>
<th>HIPS</th>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>注射机类型</td>
<td>柱塞式</td>
<td>柱塞式</td>
<td>柱塞式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>柱塞式</td>
<td>螺杆式</td>
<td>柱塞式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>螺杆式</td>
</tr>
<tr>
<td>螺杆转速/(r/min)</td>
<td>30~60</td>
<td>30~60</td>
<td>30~60</td>
<td>30~60</td>
<td>20~30</td>
<td>20~30</td>
<td>30~60</td>
<td>30~60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>喷嘴</td>
<td>形式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td></td>
<td></td>
</tr>
<tr>
<td>温度/℃</td>
<td>150~170</td>
<td>150~180</td>
<td>170~190</td>
<td>170~190</td>
<td>180~190</td>
<td>140~150</td>
<td>150~170</td>
<td>160~170</td>
<td>180~190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>料筒温度/℃</td>
<td>前段</td>
<td>170~200</td>
<td>180~200</td>
<td>180~200</td>
<td>190~200</td>
<td>160~190</td>
<td>170~190</td>
<td>170~190</td>
<td>200~210</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>中段</td>
<td>180~200</td>
<td>190~220</td>
<td>200~220</td>
<td>210~220</td>
<td>165~180</td>
<td>170~190</td>
<td>210~230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>后段</td>
<td>140~160</td>
<td>140~160</td>
<td>150~170</td>
<td>160~170</td>
<td>160~170</td>
<td>140~160</td>
<td>140~160</td>
<td>180~200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>模具温度/℃</td>
<td>30~45</td>
<td>30~60</td>
<td>50~70</td>
<td>40~80</td>
<td>70~90</td>
<td>30~40</td>
<td>30~60</td>
<td>20~60</td>
<td>20~50</td>
<td>50~70</td>
<td></td>
</tr>
<tr>
<td>注射压力/MPa</td>
<td>60~100</td>
<td>70~100</td>
<td>70~120</td>
<td>70~130</td>
<td>90~130</td>
<td>80~130</td>
<td>60~100</td>
<td>60~100</td>
<td>70~90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>保压压力/MPa</td>
<td>40~50</td>
<td>40~50</td>
<td>40~50</td>
<td>50~60</td>
<td>50~60</td>
<td>20~30</td>
<td>40~60</td>
<td>30~40</td>
<td>30~40</td>
<td>50~70</td>
<td></td>
</tr>
<tr>
<td>注射时间/s</td>
<td>0~5</td>
<td>0~5</td>
<td>0~5</td>
<td>0~5</td>
<td>2~5</td>
<td>0~8</td>
<td>2~5</td>
<td>0~8</td>
<td>0~3</td>
<td>3~5</td>
<td></td>
</tr>
<tr>
<td>保压时间/s</td>
<td>15~60</td>
<td>15~60</td>
<td>15~60</td>
<td>20~60</td>
<td>15~40</td>
<td>15~40</td>
<td>15~40</td>
<td>15~40</td>
<td>15~40</td>
<td>15~30</td>
<td></td>
</tr>
<tr>
<td>冷却时间/s</td>
<td>15~60</td>
<td>15~60</td>
<td>15~50</td>
<td>15~50</td>
<td>15~50</td>
<td>15~30</td>
<td>15~30</td>
<td>15~30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>成形周期/s</td>
<td>40~140</td>
<td>40~140</td>
<td>40~120</td>
<td>40~120</td>
<td>40~100</td>
<td>40~80</td>
<td>40~90</td>
<td>40~90</td>
<td>40~90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>项目</th>
<th>塑 料</th>
<th>高抗冲击 (ABS)</th>
<th>耐热 (ABS)</th>
<th>阻燃 (ABS)</th>
<th>透明 (ABS)</th>
<th>PMMA</th>
<th>共聚 POM</th>
<th>尼龙 PA6</th>
<th>尼龙 PA11</th>
<th>尼龙 PA66</th>
</tr>
</thead>
<tbody>
<tr>
<td>注射机类型</td>
<td>柱塞式</td>
<td>柱塞式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>柱塞式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td></td>
</tr>
<tr>
<td>螺杆转速/(r/min)</td>
<td>30~60</td>
<td>30~60</td>
<td>20~50</td>
<td>30~60</td>
<td>20~30</td>
<td>20~40</td>
<td>20~50</td>
<td>20~50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>喷嘴</td>
<td>形式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>自锁式</td>
<td></td>
</tr>
<tr>
<td>温度/℃</td>
<td>190~200</td>
<td>190~200</td>
<td>180~200</td>
<td>190~200</td>
<td>180~200</td>
<td>180~200</td>
<td>170~180</td>
<td>200~210</td>
<td>250~260</td>
<td></td>
</tr>
<tr>
<td>料筒温度/℃</td>
<td>前段</td>
<td>200~210</td>
<td>200~220</td>
<td>190~200</td>
<td>200~220</td>
<td>180~210</td>
<td>210~240</td>
<td>170~190</td>
<td>220~230</td>
<td>185~200</td>
</tr>
<tr>
<td></td>
<td>中段</td>
<td>210~230</td>
<td>220~240</td>
<td>200~220</td>
<td>220~240</td>
<td>190~210</td>
<td>180~200</td>
<td>230~240</td>
<td>190~220</td>
<td>260~280</td>
</tr>
<tr>
<td></td>
<td>后段</td>
<td>180~200</td>
<td>190~200</td>
<td>170~190</td>
<td>190~200</td>
<td>180~200</td>
<td>180~200</td>
<td>170~190</td>
<td>200~210</td>
<td>170~180</td>
</tr>
<tr>
<td>项目</td>
<td>塑料</td>
<td>高抗冲击ABS</td>
<td>耐热ABS</td>
<td>阻燃ABS</td>
<td>透明ABS</td>
<td>PMMA</td>
<td>共聚POM</td>
<td>尼龙PA6</td>
<td>尼龙PA11</td>
<td>尼龙PA66</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>模具温度/℃</td>
<td></td>
<td>50～80</td>
<td>60～85</td>
<td>50～70</td>
<td>50～70</td>
<td>40～80</td>
<td>40～80</td>
<td>90～100</td>
<td>60～100</td>
<td>60～90</td>
</tr>
<tr>
<td>注射压力/MPa</td>
<td></td>
<td>70～120</td>
<td>85～120</td>
<td>60～100</td>
<td>70～100</td>
<td>50～120</td>
<td>80～130</td>
<td>80～120</td>
<td>90～120</td>
<td>80～130</td>
</tr>
<tr>
<td>保压压力/MPa</td>
<td></td>
<td>50～70</td>
<td>50～80</td>
<td>30～60</td>
<td>50～60</td>
<td>40～60</td>
<td>40～60</td>
<td>30～50</td>
<td>30～50</td>
<td>30～50</td>
</tr>
<tr>
<td>注射时间/s</td>
<td></td>
<td>3～5</td>
<td>3～5</td>
<td>3～5</td>
<td>0～4</td>
<td>0～5</td>
<td>0～5</td>
<td>2～5</td>
<td>0～4</td>
<td>0～4</td>
</tr>
<tr>
<td>保压时间/s</td>
<td></td>
<td>15～30</td>
<td>15～30</td>
<td>15～30</td>
<td>15～40</td>
<td>20～40</td>
<td>20～40</td>
<td>20～90</td>
<td>15～50</td>
<td>15～50</td>
</tr>
<tr>
<td>冷却时间/s</td>
<td></td>
<td>15～30</td>
<td>15～30</td>
<td>10～30</td>
<td>10～30</td>
<td>20～40</td>
<td>20～40</td>
<td>20～60</td>
<td>20～40</td>
<td>20～40</td>
</tr>
<tr>
<td>成形周期/s</td>
<td></td>
<td>40～70</td>
<td>40～70</td>
<td>30～70</td>
<td>30～80</td>
<td>50～90</td>
<td>50～90</td>
<td>50～160</td>
<td>40～100</td>
<td>40～100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>项目</th>
<th>塑料</th>
<th>玻璃纤维增强PA66</th>
<th>PA610</th>
<th>PA1010</th>
<th>玻璃纤维增强PA1010</th>
<th>透明PA</th>
<th>PC</th>
<th>玻璃纤维增强PC</th>
<th>PC/PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>注射机类型</td>
<td></td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>柱塞式</td>
<td>螺杆式</td>
<td>柱塞式</td>
<td>螺杆式</td>
<td>柱塞式</td>
</tr>
<tr>
<td>螺杆转速/(r/min)</td>
<td></td>
<td>20～40</td>
<td>20～50</td>
<td>20～50</td>
<td>—</td>
<td>20～50</td>
<td>20～40</td>
<td>—</td>
<td>20～30</td>
</tr>
<tr>
<td>喷嘴形式</td>
<td></td>
<td>直通式</td>
<td>自锁式</td>
<td>自锁式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
<td>直通式</td>
</tr>
<tr>
<td>温度/℃</td>
<td></td>
<td>250～260</td>
<td>200～210</td>
<td>190～210</td>
<td>180～190</td>
<td>220～240</td>
<td>230～250</td>
<td>240～250</td>
<td>240～260</td>
</tr>
<tr>
<td>料筒温度/℃</td>
<td></td>
<td>前段</td>
<td>260～270</td>
<td>220～230</td>
<td>200～210</td>
<td>240～260</td>
<td>240～250</td>
<td>240～280</td>
<td>270～300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>中段</td>
<td>260～290</td>
<td>230～250</td>
<td>220～240</td>
<td>—</td>
<td>250～270</td>
<td>260～290</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>后段</td>
<td>230～260</td>
<td>200～210</td>
<td>190～200</td>
<td>190～200</td>
<td>220～240</td>
<td>240～270</td>
<td>260～290</td>
</tr>
<tr>
<td>模具温度/℃</td>
<td></td>
<td>100～120</td>
<td>60～90</td>
<td>40～80</td>
<td>40～80</td>
<td>40～60</td>
<td>40～110</td>
<td>90～110</td>
<td>90～110</td>
</tr>
<tr>
<td>注射压力/MPa</td>
<td></td>
<td>80～130</td>
<td>70～120</td>
<td>70～100</td>
<td>100～130</td>
<td>80～130</td>
<td>80～130</td>
<td>110～140</td>
<td>100～140</td>
</tr>
<tr>
<td>保压压力/MPa</td>
<td></td>
<td>40～50</td>
<td>30～50</td>
<td>20～40</td>
<td>40～50</td>
<td>40～50</td>
<td>40～50</td>
<td>40～50</td>
<td>40～50</td>
</tr>
<tr>
<td>注射时间/s</td>
<td></td>
<td>3～5</td>
<td>0～5</td>
<td>0～5</td>
<td>2～5</td>
<td>0～5</td>
<td>0～5</td>
<td>2～5</td>
<td>0～5</td>
</tr>
<tr>
<td>保压时间/s</td>
<td></td>
<td>20～50</td>
<td>20～50</td>
<td>20～50</td>
<td>20～60</td>
<td>20～80</td>
<td>20～60</td>
<td>20～80</td>
<td>20～60</td>
</tr>
<tr>
<td>冷却时间/s</td>
<td></td>
<td>20～40</td>
<td>20～50</td>
<td>20～40</td>
<td>20～40</td>
<td>20～40</td>
<td>20～50</td>
<td>20～50</td>
<td>20～50</td>
</tr>
<tr>
<td>成形周期/s</td>
<td></td>
<td>50～100</td>
<td>50～110</td>
<td>50～100</td>
<td>50～90</td>
<td>50～110</td>
<td>50～130</td>
<td>50～130</td>
<td>50～110</td>
</tr>
</tbody>
</table>
压缩成形工艺

1.4.2

1.4.2.1

压缩成形又称压塑成形、模压成形、压制成形等，它的基本成形原理如图所示。将松散状（粉状、粒状、碎屑状或纤维状）的固态成形物料直接加入到成形温度下的模具型腔中，使其逐渐软化熔融，并在压力作用下使物料充满模腔，这时塑料中的高分子产生化学交联反应，最终经过固化转变成为塑料制件。

与注射成形相比，压缩成形的优点有可采用普通液压机，压缩模结构简单（无浇注系统），生产过程较简单，压缩塑件内部取向组织少、性能均匀，塑件成形收缩率小等。其缺点是成形周期长，生产效率低，劳动强度大，生产操作多用手工而不易实现自动化生产；塑件经常带有溢料飞边，高度方向的尺寸精度难以控制；模具易磨损，因此使用寿命较短。

压缩成形主要用于热固性塑料，也可用于热塑性塑料（如聚四氟乙烯等）。其区别在于成形热塑性塑料时不存在交联反应，因此在充满型腔后，需将模具冷却使其凝固才能脱模而获得制件。典型的压缩制件有仪表壳、电闸板、电器开关、插座等。

压缩成形工艺过程

1.4.2.2

压缩成形工艺过程一般包括压缩成形前的准备及压缩过程两个阶段。

1.4.2.2.1

压缩成形前的准备

1.4.2.2.2

压缩成形前的准备工作主要是指预压、预热和干燥等预处理工序。

1.4.2.2.2.1

预压

压缩成形前，为了成形时操作的方便和提高塑件的质量，常利用预压模将物料在预压机上压成质量一定、形状相似的锭料。在成形时以一定数量的锭料放入压缩模内。锭料的形状一般以能十分紧凑地放入模具中便于预热为宜。通常使用的锭料形状多为圆片状，也有长条状、扁球状、空心体状或仿塑件形状。

1.4.2.2.2.2

预热与干燥

成形前应对热固性塑料加热。加热的目的有两个：一是对塑料进行干燥，除去其中的水分。
和其他挥发物；二是提高料温，便于缩短成形周期，提高塑件内部固化的均匀性，从而改善塑件的物理力学性能。同时还能提高塑料熔体的流动性，降低成形压力，减少模具磨损。

生产中预热与干燥的常用设备是烘箱和红外线加热炉。

压缩成形过程

模具装上压机后要进行预热。一般热固性塑料压缩过程可以分为加料、合模、排气、固化和脱模等几个阶段，在成形带有嵌件的塑料制件时，加料前应预热嵌件并将其安放定位于模内。

加料的关键是加料量。因为加料的多少直接影响塑件的尺寸和密度，所以必须严格定量。定量的方法有测重法、容量法和计数法三种。测重法比较准确，但操作麻烦；容积法虽然不及测重法准确，但操作方便；计数法只用于预压锭料的加料。物料加入型腔时，应根据其成形时的流动情况和各部位大致需要量合理堆放，以免造成塑件局部疏松等现象，尤其对流动性差的塑料更应注意。

加料后即进行合模。合模分为两步：当凸模尚未接触物料时，为缩短成形周期，避免塑料在合模之前发生化学反应，应加快加料速度；当凸模接触到塑料之后，为避免嵌件或模具成形零件的损坏，并使模腔内空气充分排除，应放慢合模速度，即所谓先快后慢的合模方式。

压缩热固性塑料时，在模具闭合后，有时还需卸压将凸模松动少许时间，以便排出其中的气体。排气不但可以缩短固化时间，而且还有利于塑件性能和表面质量的提高。排气的次数和时间要按需要而定，通常排气的次数为一至两次，每次时间由几秒至几十秒。

压缩成形热固性塑料时，塑料依靠交联反应固化定型，生产中常将这一过程称为硬化。在这一过程中，呈黏流态的热固性塑料在模腔内与固化剂反应，形成交联结构，并在成形温度下保持一段时间，使其性能达到最佳状态。对固化速率不高的塑料，为提高生产率，有时不必将整个固化过程放在模具内完成（特别是一些硬化速度过慢的塑料），只需塑件能完整脱模即可结束成形，然后采用后处理（后烘）的方法来完成固化。模内固化时间应适中，一般为30 s（至数分钟不等，视塑料品种、塑件厚度、预热状况与成形温度而定。时间过短，热固性塑件的机械强度、耐蠕变性、耐热性、耐化学稳定性、电气绝缘性等性能均下降，热膨胀、后收缩增加，有时还会出现裂纹；时间过长，塑件机械强度不高、脆性大、表面出现密集小泡等。

制品脱模方法分为机动推出脱模和手动推出脱模。带有侧向型芯或嵌件时，必须先用专用工具将它们拧脱，才能取出塑件。

塑件脱模后，对模具应进行清理，有时对塑件要进行后处理。

模具的清理：脱模后必要时需用铜刀或铜刷去除残留在模具内的塑料废边，然后用压缩空气吹净模具。如果塑料有黏膜现象，用上述方法不易清理时则用抛光剂拭涮。
为了进一步提高塑件的质量，热固性塑料制件脱模后常在较高的温度下保温一段时间。后处理能使塑料固化更趋完全，同时减少或消除塑件的内应力，减少水分及挥发物等，有利于提高塑件的电性能及强度。常用的热固性塑件退火处理温度及时间可参考表1-4。

表1-4 常用热固性塑件退火处理温度及时间

<table>
<thead>
<tr>
<th>塑料种类</th>
<th>退火温度/°C</th>
<th>保温时间/h</th>
<th>塑料种类</th>
<th>退火温度/°C</th>
<th>保温时间/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>酚醛塑料制件</td>
<td>80 ~ 130</td>
<td>4 ~ 24</td>
<td>酚醛纤维塑料制件</td>
<td>70 ~ 80</td>
<td>10 ~ 12</td>
</tr>
<tr>
<td>氨基塑料制件</td>
<td>130 ~ 160</td>
<td>4 ~ 24</td>
<td>氨基纤维塑料制件</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

压缩成形工艺参数

压缩成形的压力、温度和时间是压缩成形的重要工艺参数。压缩成形压力是指压缩时压力机通过凸模对塑件熔体在充满型腔和固化时在分型面单位投影面积上施加的压力，简称成形压力，可采用以下公式进行计算：

\[p = \frac{p_b \pi D^2}{4A} \]

式中：
- \(p \) — 压缩成形压力，一般为15 ~ 30 MPa；
- \(p_b \) — 压力机工作液压缸表压力，345 MPa；
- \(D \) — 压力机主缸活塞直径，6 m；
- \(A \) — 塑件与凸模接触部分在分型面上的投影面积，6 m²。

1. 压缩成形压力
 - 施加成形压力的目的是促使物料流动充模，提高塑件的密度和内在质量，克服塑料树脂在成形过程中因化学变化释放的低分子物质及塑料中的水分等产生的胀模力，使模具闭合，保证塑件具有稳定的尺寸、形状，减少飞边，防止变形。但过大的成形压力会降低模具寿命。
 - 压缩成形压力的大小与塑料种类、塑件结构以及模具温度等因素有关，一般情况下，塑料的流动性愈小，塑件愈厚以及形状愈复杂，塑料固化速度和压缩比愈大，所需的成形压力亦愈大。

2. 压缩成形温度
 - 压缩成形温度是指压缩成形时所需的模具温度。它是使热固性塑料流动、充模并最后固化成形的主要工艺因素，决定了成形过程中聚合物交联反应的速度，从而影响塑件的最终性能。
 - 压缩成形温度高低影响模内塑料熔料的充模是否顺利，也影响成形时的硬化速度，进而影响塑件质量。随着温度的升高，塑料固体粉末逐渐融化，黏度由大到小，开始交联反应，当其流动性随温度的升高而出现峰值时，迅速增大成形压力，使塑料在温度还不很高而流动性又较大时充满型腔的各部分。
 - 在一定温度范围内，模具温度升高，成形周期缩短，生产效率提高。如果模具温度太高，将使树脂和有机物分解，塑件表面颜色就会暗淡。由于塑件外层首先硬化，影响物料的流动，将引起充模不满，特别是模压形状复杂、薄壁、深度大的塑件最为明显。同时，由于水分和挥发物难以排除，塑件内应力大，模件开启时塑件易发生肿胀、开裂、翘曲等；如果模具温度过低，硬化不足，塑件表面将会无光，其物理性能和力学性能下降。
常见热固性塑料的压缩成形温度和成形压力

<table>
<thead>
<tr>
<th>塑料类型</th>
<th>压缩成形温度 (°C)</th>
<th>压缩成形压力 (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>酚醛塑料 (PF)</td>
<td>146 ~ 180</td>
<td>7 ~ 24</td>
</tr>
<tr>
<td>三聚氰胺甲醛塑料 (MF)</td>
<td>140 ~ 180</td>
<td>14 ~ 56</td>
</tr>
<tr>
<td>脲甲醛塑料 (UF)</td>
<td>135 ~ 155</td>
<td>14 ~ 56</td>
</tr>
<tr>
<td>UP塑料</td>
<td>85 ~ 150</td>
<td>0.35 ~ 3.5</td>
</tr>
<tr>
<td>PDPO塑料</td>
<td>120 ~ 160</td>
<td>3.5 ~ 14</td>
</tr>
<tr>
<td>PE塑料</td>
<td>145 ~ 200</td>
<td>0.7 ~ 14</td>
</tr>
<tr>
<td>DSMG塑料</td>
<td>150 ~ 190</td>
<td>0.7 ~ 56</td>
</tr>
</tbody>
</table>

压缩时间

压缩成形时，要在一定温度和一定压力下保持一定时间，才能使其充分交联固化，成为性能优良的塑件，这一时间称为压缩时间。压缩时间与塑料的种类（树脂种类、挥发物含量等）、塑件形状、压缩成形的其他工艺条件以及操作步骤（是否排气、预压、预热）等有关。压缩成形温度升高，塑件固化速度加快，所需压缩时间减少，因而压缩周期随模具温度提高也会减少。对成形物料进行预热或预压以及采用较高成形压力时，压缩时间均可适当缩短，通常塑件厚度增加压缩时间会随之增加。

压缩时间的长短对塑件的性能影响很大。压缩时间过短，塑料硬化不足，将使塑件的外观性能变差，力学性能下降，易变形。适当增加压缩时间，可以减少塑件收缩率，提高其耐热性和其他物理力学性能。但如果压缩时间过长，不仅降低生产率，而且会使树脂交联过度而使塑件收缩率增加，产生内应力，导致塑件力学性能下降，严重时会使塑件破裂。表1列出酚醛塑料和氨基塑料的压缩成形工艺参数。

表1 压缩成形的工艺参数

<table>
<thead>
<tr>
<th>工艺参数</th>
<th>酚 醛 塑 料</th>
<th>氨 基 塑 料</th>
</tr>
</thead>
<tbody>
<tr>
<td>压缩成形温度 (°C)</td>
<td>150 ~ 165</td>
<td>150 ~ 170</td>
</tr>
<tr>
<td>压缩成形温度 (MPa)</td>
<td>25 ~ 35</td>
<td>25 ~ 35</td>
</tr>
<tr>
<td>压缩时间 (min/mm)</td>
<td>0.8 ~ 1.2</td>
<td>1.5 ~ 2.5</td>
</tr>
</tbody>
</table>

注：

1. 系以苯酚甲醛线型树脂和粉末为基础的压缩粉；
2. 系以甲酚甲醛可溶性树脂的粉末为基础的压缩粉；
3. 系以苯酚苯胺甲醛树脂和无机矿物为基础的压缩粉。
起来的一种热固性塑料的成形方法。其成形原理如图所示,先将固态成形物料(最好是预压成锭或经预热的物料)加入装在闭合的压注模具上的加料腔内,使其受热软化转变为黏流态,并在压力机柱塞压力作用下塑料熔体经过浇注系统充满型腔,塑料在型腔内继续受热受压,产生交联反应而固化定型,最后开模取出塑件。

压注成形和注射成形的相同之处是熔料均是通过浇注系统进入型腔,不同之处在于前者塑料是在模具加料腔内塑化,而后者则是在注射机的料筒内塑化。压注成形是在克服压缩成形缺点、吸收注射成形优点的基础上发展起来的。它的主要优点有:

1. 压注成形前模具已经闭合,塑料在加热腔内加热和熔融,在压力机通过压注柱塞将其挤入型腔并经过狭窄分流道和浇口时,由于摩擦作用,塑料能很快均匀地热透和硬化。因此,制品性能均匀密实,质量好。

2. 压注成形时的溢料较压缩成形时少,而且飞边厚度薄,容易去除。因此,塑件的尺寸精度较高,特别是制件的高度尺寸精度较压缩制件高得多。

3. 由于成形物料在进入型腔前已经塑化,对型芯或嵌件所产生的挤压力小,因此能成形深腔薄壁塑件或带有深孔的塑件,也可成形形状较复杂以及带精细或易碎嵌件的塑件,还可成形难以用压缩法成形的塑件。

4. 由于成形物料在加料腔内已经受热熔融,因此,进入模腔时料温及吸热量均匀,所需的交联固化时间较短,致使成形周期较短,生产效率高。

压注成形虽然具有上述诸多优点,但也存在以下缺点:成形压力比压缩成形高;工艺条件比压缩成形要求更严格,操作比压缩成形难度大;压注模比压缩模结构复杂;成形后加料腔内总留有一部分余料以及浇注系统中的凝料,由于不能回收将会增加生产中原材料消耗;存在取向问题,容易使塑件产生取向应力和各向异性,特别是成形纤维增强塑料时,塑料大分子的取向与纤维的取向结合在一起,更容易使塑件的各向异性程度提高。
1.4.3.3 压注成形工艺参数

压注成形工艺参数包括成形压力、成形温度和成形时间等，它们均与塑料品种、模具结构、塑料情况等多种因素有关。

1. 成形压力

成形压力是指压力机通过压注柱塞对加料腔内塑料熔体施加的压力。由于熔体通过浇注系统时有压力损失，故压注时的成形压力一般为压缩时的几倍。例如，酚醛塑料粉和氨基塑料粉需要用的成形压力通常为100 ~ 200 MPa，高者可达800 ~ 1600 MPa。

2. 模具温度

压注成形的模具温度通常要比压缩成形的温度低一些，一般约为70 ~ 80°C，因为塑料通过浇注系统时能从摩擦中取得一部分热量。加料室和下模的温度要低一些，而中框的温度要高一些，这样可保证塑料进入通畅而不会出现溢料现象，同时也可以避免塑件出现缺料、起泡、接缝等缺陷。

3. 成形时间

压注成形时间包括加料时间、充模时间、交联固化时间、脱模取塑件时间和清模时间等。压注成形时的充模时间通常为45 ~ 60 s，而固化时间取决于塑料品种、塑件的大小、形状、壁厚、预热条件和模具结构等，通常为30 ~ 60 min。

下表列出了酚醛和其他一些热固性塑料压注成形的主要工艺参数。

<table>
<thead>
<tr>
<th>表1-7</th>
<th>表1-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>表1-7 酚醛压注成形的主要工艺参数</td>
<td>表1-8 部分塑料压注成形的主要工艺参数</td>
</tr>
<tr>
<td>模具类型</td>
<td>物料状态</td>
</tr>
<tr>
<td>未预热</td>
<td>高频预热</td>
</tr>
<tr>
<td>未预热</td>
<td>100 ~ 110</td>
</tr>
<tr>
<td>未预热</td>
<td>160</td>
</tr>
<tr>
<td>未预热</td>
<td>4 ~ 5</td>
</tr>
<tr>
<td>未预热</td>
<td>8</td>
</tr>
<tr>
<td>未预热</td>
<td>12 ~ 13</td>
</tr>
<tr>
<td>表1-8 环氧双酚A模塑料</td>
<td>138 ~ 193</td>
</tr>
<tr>
<td>玻璃纤维</td>
<td>121 ~ 193</td>
</tr>
<tr>
<td>纤维和玻璃纤维</td>
<td>121 ~ 193</td>
</tr>
<tr>
<td>环氧酚醛模塑料</td>
<td>190 ~ 196</td>
</tr>
<tr>
<td>矿物和玻璃纤维</td>
<td>143 ~ 165</td>
</tr>
<tr>
<td>材料</td>
<td>填料</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>三聚氰胺</td>
<td>纤维素</td>
</tr>
<tr>
<td>酚醛</td>
<td>织物和回收料</td>
</tr>
<tr>
<td>聚酯</td>
<td>玻璃纤维</td>
</tr>
<tr>
<td>聚酯</td>
<td>导电护套料</td>
</tr>
<tr>
<td>醇酸树脂</td>
<td>矿物质</td>
</tr>
<tr>
<td>脲醛塑料</td>
<td>纤维</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>α-</td>
<td>—</td>
</tr>
</tbody>
</table>

注:

1. TMC
2. SMC

1. 4. 4

1. 4. 4. 1

1. 13 表示挤出成形所用的设备为挤出机，所得塑件均为具有恒定断面形状的连续型材，如管、棒、丝、板、薄膜、电线电缆的涂覆和涂层塑件等。挤出成形还可用于塑料的着色、造粒和共混改性等。这种成形方法有以下特点:

1. 1. 13

1. 1. 13

1—1
2—2
3—3
4—4
5—5
6—6
7—7
1.4.4.2 挤出成形工艺过程

1. 塑化阶段
经过干燥处理的塑料原料由挤出机料斗加入料筒后，在料筒温度和螺杆旋转、压实及混合作用下，由固态的粉料或粒料转变为具有一定流动性的均匀熔体，这一过程称为塑化。

2. 挤出成形阶段
均匀塑化的塑料熔体随螺杆的旋转向料筒前端移动，在螺杆的旋转挤压作用下，通过一定形状的口模而得到截面与口模形状一致的连续型材。

3. 冷却定型阶段
通过适当的处理方法，如定径处理、冷却处理等，使已挤出的塑料连续型材固化为塑料制件。大多数情况下，定型和冷却是同时完成的，只有在挤出各种棒料和管材时，才有一个独立的定径过程，而挤出薄膜、单丝等无需定型，仅通过冷却便可。挤出板材与片材，有时还通过一对压辊压平，也有定型与冷却作用。管材的定型方法可用定径套、定径环和定径板等，也有采用能通水冷却的特殊口模来定径的。不论采用哪种方法，都是使管坯内外形成压力差，使其紧贴在定径套上而冷却定型。

4. 塑件的牵引、卷取和切割
塑件自口模挤出后，一般都会因压力突然解除而发生离模膨胀现象，而冷却后又会发生收缩现象，从而使塑件的尺寸和形状发生改变。此外，由于塑件被连续不断地挤出，自重越来越大，如果不加以引导，会造成塑件停滞，使塑件不能顺利挤出。因此，在冷却的同时，要连续均匀地将塑件引出，这就是牵引。

牵引过程由挤出机辅机之一的牵引装置来完成。牵引速度要与挤出速率相适应，一般是牵引速度略大于挤出速率，以便消除塑件尺寸的变化值，同时对塑件进行适当的拉伸可提高质量。不同的塑件牵引速度不同。通常薄膜和单丝的牵引速度可以快些，其原因是牵引速度大，塑件的厚度和直径减小，纵向抗断裂强度增高，扯断伸长率降低。对于挤出硬质塑件，牵引速度则不能大，通常需将牵引速度规定在一定范围内，并且要十分均匀，不然就会影响其尺寸均匀性和力学性能。

通过牵引的塑件可根据使用要求在切割装置上裁剪（如棒、管、板、片等），或在卷取装置上绕制成卷（如薄膜、单丝、电线电缆等）。此外，某些塑件，如薄膜等有时还需要进行后处理，以提高尺寸稳定性。
挤出成形工艺参数

挤出成形工艺参数包括温度、压力、挤出速度和牵引速度等，下面分别讨论。

1. 温度

温度是挤出成形得以顺利进行的重要条件之一。从粉状或粒状的固态物料开始，高温制品从机头中挤出，经历了一个复杂的温度变化过程。严格来讲，挤出成形温度应指塑料熔体的温度，但该温度却在很大程度上取决于料筒和螺杆的温度，一小部分来自在料筒中混合时产生的摩擦热，所以经常用料筒温度近似表示成形温度。

图1为聚乙烯挤出成形温度曲线(图中1为挤出机螺杆外径)，它是沿料筒轴心方向测得的。由图可知，料筒和塑料温度在螺杆各段是有差异的，为了使塑料在料筒中输送、熔融、均化和挤出的过程顺利进行，以便高效率地生产高质量制品，关键问题是控制好料筒各段温度，调节是靠挤出机的加热冷却系统和温度控制系统来实现的。

机头温度必须控制在塑料热分解温度以下，而口模处的温度可比机头温度稍低一些，但应保证塑料熔体具有良好的流动性。

此外，成形过程中温度的波动和温差，将使塑件产生残余应力、各点强度不均匀和表面灰暗无光泽等缺陷。产生这种波动和温差的因素很多，如加热、冷却系统不稳定，螺杆转速变化等，但以螺杆设计和选用的好坏影响最大。

表1是几种塑料挤出成形管材、片材和板材及薄膜等的温度参数。

<table>
<thead>
<tr>
<th>塑料名称</th>
<th>挤出温度/℃</th>
<th>加料段</th>
<th>压缩段</th>
<th>均化段</th>
<th>机头及口模段</th>
</tr>
</thead>
<tbody>
<tr>
<td>丙烯酸类聚合物</td>
<td>室温</td>
<td>100 ~ 170</td>
<td>~ 200</td>
<td>175 ~ 210</td>
<td>≤0.025</td>
</tr>
<tr>
<td>醋酸纤维素</td>
<td>室温</td>
<td>110 ~ 130</td>
<td>~ 150</td>
<td>175 ~ 190</td>
<td><0.5</td>
</tr>
<tr>
<td>聚酰胺</td>
<td>室温</td>
<td>~ 90</td>
<td>140 ~ 180</td>
<td>~ 270</td>
<td>180 ~ 270</td>
</tr>
<tr>
<td>聚乙烯</td>
<td>室温</td>
<td>90 ~ 140</td>
<td>~ 180</td>
<td>160 ~ 200</td>
<td><0.3</td>
</tr>
<tr>
<td>硬聚氯乙烯</td>
<td>室温</td>
<td>~ 60</td>
<td>120 ~ 170</td>
<td>~ 180</td>
<td>170 ~ 190</td>
</tr>
<tr>
<td>软聚氯乙烯</td>
<td>室温</td>
<td>80 ~ 120</td>
<td>~ 140</td>
<td>140 ~ 190</td>
<td><0.2</td>
</tr>
<tr>
<td>聚苯乙烯</td>
<td>室温</td>
<td>~ 100</td>
<td>130 ~ 170</td>
<td>~ 220</td>
<td>180 ~ 245</td>
</tr>
</tbody>
</table>
4. 塑料熔体压力

增加机头压力可以提高挤出熔体的混合均匀性和稳定性，提高产品致密度，但机头压力过大将影响产量。

和其他一样，压力随时间的变化也会产生周期性波动，这种波动对塑件质量同样有不利影响。螺杆转速的变化，加热、冷却系统的不稳定都是产生压力波动的原因。为了减少压力波动，应合理控制螺杆转速，保证加热和冷却装置的温度控制精度。

挤出速度

挤出速度（亦称挤出速率）是单位时间内挤出机口模挤出的塑料质量（单位为 kg/h）或长度（单位为 m）。挤出速度的大小表征着挤出生产能力的高低。

影响挤出速度的因素很多，如机头、螺杆和料筒的结构、螺杆转速、加热冷却系统结构和塑料的特性等。理论和实践都证明，挤出速度随螺杆直径、螺槽深度、均化段长度和螺杆转速的增大而增大，随螺杆末端熔体压力和螺杆与料筒间隙增大而增大。在挤出机的结构和塑料品种及塑件类型已确定的情况下，挤出速率仅与螺杆转速有关，因此，调整螺杆转速是控制挤出速度的主要措施。

挤出速度在生产过程中也存在波动现象，这将影响塑件的几何形状和尺寸精度。因此，除了正确确定螺杆结构和尺寸参数之外，还应严格控制螺杆转速，严格控制挤出温度，防止因温度改变而引起挤出压力和熔体黏度变化，从而导致挤出速度的波动。

牵引速度

挤出成形主要生产连续的塑件，因此必须设置牵引装置。从机头和口模中挤出的塑件，在牵引力作用下将会发生拉伸取向。拉伸取向程度越高，塑件沿取向方向的拉伸强度也越大，但冷却后长度收缩也大。通常，牵引速度可与挤出速度相当。牵引速度与挤出速度的比值称牵引比，其值必须大于 1。

表1-10是几种塑料管材的挤出成形工艺参数。

<table>
<thead>
<tr>
<th>塑料</th>
<th>管材外径 / mm</th>
<th>管材内径 / mm</th>
<th>管材厚度 / mm</th>
<th>机筒温度 / °C</th>
<th>机头温度 / °C</th>
<th>口模温度 / °C</th>
<th>螺杆转速 / r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVC</td>
<td>95</td>
<td>31</td>
<td>24</td>
<td>80 ~ 100</td>
<td>140 ~ 150</td>
<td>160 ~ 170</td>
<td>12</td>
</tr>
<tr>
<td>PVC</td>
<td>90 ~ 100</td>
<td>90 ~ 100</td>
<td>160 ~ 165</td>
<td>200 ~ 250</td>
<td>240 ~ 250</td>
<td>200 ~ 240</td>
<td>20</td>
</tr>
<tr>
<td>PE</td>
<td>120 ~ 130</td>
<td>110 ~ 120</td>
<td>170 ~ 175</td>
<td>260 ~ 270</td>
<td>230 ~ 255</td>
<td>220 ~ 240</td>
<td>15</td>
</tr>
<tr>
<td>ABS</td>
<td>160 ~ 170</td>
<td>130 ~ 140</td>
<td>175 ~ 180</td>
<td>260 ~ 280</td>
<td>200 ~ 220</td>
<td>200 ~ 210</td>
<td>10.5</td>
</tr>
<tr>
<td>PA - 1010</td>
<td>160 ~ 180</td>
<td>170 ~ 180</td>
<td>190 ~ 195</td>
<td>200 ~ 210</td>
<td>200 ~ 210</td>
<td>16.5</td>
<td>10.5</td>
</tr>
<tr>
<td>PC</td>
<td>5 ± 1</td>
<td>2 ± 1</td>
<td>3 ± 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
1.5 塑件设计

1.5.1 塑件尺寸及其精度

1. **塑件尺寸**
 - 塑件尺寸是指塑件的总体外形尺寸，而不是壁厚、孔径等结构尺寸。
 - 塑件尺寸应根据使用要求进行设计，但要受到塑料的流动性制约。在一定的设备和工艺条件下，流动性好的塑料可以成形较大尺寸的塑件，反之能成形的塑件尺寸就较小。塑件尺寸还受成形设备的限制，注射成形的塑件尺寸要受到注射机的注射量、锁模力和模板尺寸的限制；压缩和压注成形的塑件尺寸要受到压机最大压力和压机工作台面最大尺寸的限制。
 - 因此，从原材料性能、模具制造成本和成形工艺性等条件出发，只要能满足塑件的使用要求，应尽量将塑件设计得紧凑、尺寸小巧一些。

2. **塑件尺寸精度**
 - 塑件尺寸精度是指所获得的塑件尺寸与产品图中尺寸的符合程度，即所获得塑件尺寸的准确度。
 - 影响塑件尺寸精度的因素很多，如模具制造精度及使用后的磨损程度，塑料收缩率的波动，成形工艺条件的变化，塑件的形状等。一般来讲，为了降低模具的加工难度和模具制造成本，在满足塑件使用要求的前提下应尽可能把塑件尺寸精度设计得低一些。

塑件尺寸公差应根据《工程塑料模塑塑料件尺寸公差标准》确定，尺寸公差见表。该标准中塑件尺寸公差的代号为<;，公差等级分为3级。该标准只规定公差，基本尺寸的上、下偏差可根据塑件使用要求来分配。一般情况下，对于塑件上孔的公差采用单向正偏差，即取表中数值冠以(=)号；对于塑件上轴的公差采用单向负偏差，即取表中数值冠以(,)号；对于中心距尺寸及其他位置尺寸公差采用双向等值偏差，即取表中数值之半再冠以(>)号。

表

<table>
<thead>
<tr>
<th>材料</th>
<th>HPVC</th>
<th>LPVC</th>
<th>LDPE</th>
<th>ABS</th>
<th>PA-1010</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>口模内径/mm</td>
<td>90.7</td>
<td>32</td>
<td>24.5</td>
<td>33</td>
<td>44.8</td>
<td>33</td>
</tr>
<tr>
<td>芯模内径/mm</td>
<td>79.7</td>
<td>25</td>
<td>19.1</td>
<td>26</td>
<td>38.5</td>
<td>26</td>
</tr>
<tr>
<td>稳流定型段长度/mm</td>
<td>120</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>45</td>
<td>87</td>
</tr>
<tr>
<td>牵引比</td>
<td>1.04</td>
<td>1.2</td>
<td>1.1</td>
<td>1.02</td>
<td>1.5</td>
<td>0.97</td>
</tr>
<tr>
<td>真空定径套内径/mm</td>
<td>96.5</td>
<td>—</td>
<td>25</td>
<td>33</td>
<td>31.7</td>
<td>33</td>
</tr>
<tr>
<td>定径套长度/mm</td>
<td>300</td>
<td>—</td>
<td>160</td>
<td>250</td>
<td>—</td>
<td>250</td>
</tr>
<tr>
<td>定径套与口模间距/mm</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

1.5.1 塑件尺寸及其精度

1. 塑件尺寸

- 塑件尺寸是指塑件的总体外形尺寸，而不是壁厚、孔径等结构尺寸。
- 塑件尺寸应根据使用要求进行设计，但要受到塑料的流动性制约。在一定的设备和工艺条件下，流动性好的塑料可以成形较大尺寸的塑件，反之能成形的塑件尺寸就较小。塑件尺寸还受成形设备的限制，注射成形的塑件尺寸要受到注射机的注射量、锁模力和模板尺寸的限制；压缩和压注成形的塑件尺寸要受到压机最大压力和压机工作台面最大尺寸的限制。

2. 塑件尺寸精度

- 塑件尺寸精度是指所获得的塑件尺寸与产品图中尺寸的符合程度，即所获得塑件尺寸的准确度。
- 影响塑件尺寸精度的因素很多，如模具制造精度及使用后的磨损程度，塑料收缩率的波动，成形工艺条件的变化，塑件的形状等。一般来讲，为了降低模具的加工难度和模具制造成本，在满足塑件使用要求的前提下应尽可能把塑件尺寸精度设计得低一些。

塑件尺寸公差应根据《工程塑料模塑塑料件尺寸公差标准》确定，尺寸公差见表。该标准中塑件尺寸公差的代号为<;，公差等级分为3级。该标准只规定公差，基本尺寸的上、下偏差可根据塑件使用要求来分配。一般情况下，对于塑件上孔的公差采用单向正偏差，即取表中数值冠以(=)号；对于塑件上轴的公差采用单向负偏差，即取表中数值冠以(,)号；对于中心距尺寸及其他位置尺寸公差采用双向等值偏差，即取表中数值之半再冠以(>)号。

- 表

<table>
<thead>
<tr>
<th>材料</th>
<th>HPVC</th>
<th>LPVC</th>
<th>LDPE</th>
<th>ABS</th>
<th>PA-1010</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>口模内径/mm</td>
<td>90.7</td>
<td>32</td>
<td>24.5</td>
<td>33</td>
<td>44.8</td>
<td>33</td>
</tr>
<tr>
<td>芯模内径/mm</td>
<td>79.7</td>
<td>25</td>
<td>19.1</td>
<td>26</td>
<td>38.5</td>
<td>26</td>
</tr>
<tr>
<td>稳流定型段长度/mm</td>
<td>120</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>45</td>
<td>87</td>
</tr>
<tr>
<td>牵引比</td>
<td>1.04</td>
<td>1.2</td>
<td>1.1</td>
<td>1.02</td>
<td>1.5</td>
<td>0.97</td>
</tr>
<tr>
<td>真空定径套内径/mm</td>
<td>96.5</td>
<td>—</td>
<td>25</td>
<td>33</td>
<td>31.7</td>
<td>33</td>
</tr>
<tr>
<td>定径套长度/mm</td>
<td>300</td>
<td>—</td>
<td>160</td>
<td>250</td>
<td>—</td>
<td>250</td>
</tr>
<tr>
<td>定径套与口模间距/mm</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>公差等级</td>
<td>公差种类</td>
<td>基本尺寸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>大于 0</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>到 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT1</td>
<td>A</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>MT1</td>
<td>B</td>
<td>0.14</td>
<td>0.16</td>
<td>0.18</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>MT2</td>
<td>A</td>
<td>0.10</td>
<td>0.12</td>
<td>0.14</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>MT2</td>
<td>B</td>
<td>0.20</td>
<td>0.22</td>
<td>0.24</td>
<td>0.26</td>
<td>0.28</td>
</tr>
<tr>
<td>MT3</td>
<td>A</td>
<td>0.12</td>
<td>0.14</td>
<td>0.16</td>
<td>0.18</td>
<td>0.20</td>
</tr>
<tr>
<td>MT3</td>
<td>B</td>
<td>0.32</td>
<td>0.34</td>
<td>0.36</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>MT4</td>
<td>A</td>
<td>0.16</td>
<td>0.18</td>
<td>0.20</td>
<td>0.24</td>
<td>0.28</td>
</tr>
<tr>
<td>MT4</td>
<td>B</td>
<td>0.36</td>
<td>0.38</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
</tr>
<tr>
<td>MT5</td>
<td>A</td>
<td>0.20</td>
<td>0.24</td>
<td>0.28</td>
<td>0.32</td>
<td>0.38</td>
</tr>
<tr>
<td>MT5</td>
<td>B</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
<td>0.52</td>
<td>0.58</td>
</tr>
<tr>
<td>MT6</td>
<td>A</td>
<td>0.26</td>
<td>0.32</td>
<td>0.38</td>
<td>0.46</td>
<td>0.54</td>
</tr>
<tr>
<td>MT6</td>
<td>B</td>
<td>0.46</td>
<td>0.52</td>
<td>0.58</td>
<td>0.68</td>
<td>0.74</td>
</tr>
<tr>
<td>MT7</td>
<td>A</td>
<td>0.38</td>
<td>0.48</td>
<td>0.58</td>
<td>0.68</td>
<td>0.78</td>
</tr>
<tr>
<td>MT7</td>
<td>B</td>
<td>0.58</td>
<td>0.68</td>
<td>0.78</td>
<td>0.88</td>
<td>0.98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>公差等级</th>
<th>公差种类</th>
<th>未注公差的尺寸允许偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>±0.10</td>
</tr>
<tr>
<td>MT5</td>
<td>A</td>
<td>±0.20</td>
</tr>
<tr>
<td>MT6</td>
<td>A</td>
<td>±0.13</td>
</tr>
<tr>
<td>MT7</td>
<td>A</td>
<td>±0.19</td>
</tr>
<tr>
<td>MT7</td>
<td>B</td>
<td>±0.29</td>
</tr>
<tr>
<td>公差等级</td>
<td>公差种类</td>
<td>120</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>MT1</td>
<td>A</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.42</td>
</tr>
<tr>
<td>MT2</td>
<td>A</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.56</td>
</tr>
<tr>
<td>MT3</td>
<td>A</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.84</td>
</tr>
<tr>
<td>MT4</td>
<td>A</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.12</td>
</tr>
<tr>
<td>MT5</td>
<td>A</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.48</td>
</tr>
<tr>
<td>MT6</td>
<td>A</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2.20</td>
</tr>
<tr>
<td>MT7</td>
<td>A</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>公差等级</th>
<th>公差种类</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>225</th>
<th>250</th>
<th>280</th>
<th>315</th>
<th>355</th>
<th>400</th>
<th>450</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT5</td>
<td>A</td>
<td>± 0.64</td>
<td>± 0.72</td>
<td>± 0.80</td>
<td>± 0.88</td>
<td>± 0.96</td>
<td>± 1.05</td>
<td>± 1.15</td>
<td>± 1.25</td>
<td>± 1.40</td>
<td>± 1.55</td>
<td>± 1.75</td>
<td>± 1.95</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>± 0.74</td>
<td>± 0.82</td>
<td>± 0.90</td>
<td>± 0.98</td>
<td>± 1.06</td>
<td>± 1.15</td>
<td>± 1.25</td>
<td>± 1.35</td>
<td>± 1.50</td>
<td>± 1.65</td>
<td>± 1.85</td>
<td>± 2.05</td>
</tr>
<tr>
<td>MT6</td>
<td>A</td>
<td>± 1.00</td>
<td>± 1.10</td>
<td>± 1.20</td>
<td>± 1.30</td>
<td>± 1.45</td>
<td>± 1.60</td>
<td>± 1.75</td>
<td>± 1.90</td>
<td>± 2.15</td>
<td>± 2.35</td>
<td>± 2.65</td>
<td>± 3.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>± 1.10</td>
<td>± 1.20</td>
<td>± 1.30</td>
<td>± 1.40</td>
<td>± 1.55</td>
<td>± 1.70</td>
<td>± 1.85</td>
<td>± 2.00</td>
<td>± 2.25</td>
<td>± 2.45</td>
<td>± 2.75</td>
<td>± 3.10</td>
</tr>
<tr>
<td>MT7</td>
<td>A</td>
<td>± 1.35</td>
<td>± 1.50</td>
<td>± 1.65</td>
<td>± 1.85</td>
<td>± 2.05</td>
<td>± 2.25</td>
<td>± 2.45</td>
<td>± 2.70</td>
<td>± 3.00</td>
<td>± 3.35</td>
<td>± 3.70</td>
<td>± 4.10</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>± 1.45</td>
<td>± 1.60</td>
<td>± 1.75</td>
<td>± 1.96</td>
<td>± 2.15</td>
<td>± 2.35</td>
<td>± 2.55</td>
<td>± 2.80</td>
<td>± 3.10</td>
<td>± 3.45</td>
<td>± 3.80</td>
<td>± 4.20</td>
</tr>
</tbody>
</table>

注：A——不受模具活动部分影响的尺寸。
B——受模具活动部分影响的尺寸。
对塑件的精度要求要根据具体情况来分析，一般配合部分尺寸精度高于非配合部分尺寸精度。塑件的精度要求越高，模具的制造精度要求也越高，模具的制造难度及成本亦越高，而塑件的废品率也会增加。因此，应根据表

<table>
<thead>
<tr>
<th>常用材料模塑件公差等级和选用(GB/T 14486)</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料代号</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>ABS</td>
</tr>
<tr>
<td>AS</td>
</tr>
<tr>
<td>CA</td>
</tr>
<tr>
<td>EP</td>
</tr>
<tr>
<td>PA</td>
</tr>
<tr>
<td>PBTP</td>
</tr>
<tr>
<td>PC</td>
</tr>
<tr>
<td>PDAP</td>
</tr>
<tr>
<td>PE</td>
</tr>
<tr>
<td>PESU</td>
</tr>
<tr>
<td>PETP</td>
</tr>
<tr>
<td>PF</td>
</tr>
<tr>
<td>PMMA</td>
</tr>
<tr>
<td>POM</td>
</tr>
<tr>
<td>PP</td>
</tr>
<tr>
<td>PPO</td>
</tr>
<tr>
<td>PPS</td>
</tr>
<tr>
<td>PS</td>
</tr>
<tr>
<td>PSU</td>
</tr>
</tbody>
</table>
材料代号 塑料材料

<table>
<thead>
<tr>
<th>公差等级</th>
<th>注标公差尺寸</th>
<th>高精度</th>
<th>一般精度</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT2</td>
<td>MT3</td>
<td>MT5</td>
<td></td>
</tr>
<tr>
<td>MT5</td>
<td>MT6</td>
<td>MT7</td>
<td></td>
</tr>
<tr>
<td>MT2</td>
<td>MT3</td>
<td>MT5</td>
<td></td>
</tr>
<tr>
<td>MT3</td>
<td>MT4</td>
<td>MT6</td>
<td></td>
</tr>
</tbody>
</table>

1.5.2 塑件表面质量

塑件表面质量包括表面粗糙度和表观质量等。塑件的外观要求越高，表面粗糙度值应越低。塑件表面粗糙度的高低，主要与模具型腔表面的表面粗糙度有关。一般说来，模具表面的表面粗糙度要比塑件低1~2级。模具在使用过程中，由于型腔磨损而使表面粗糙度值不断加大，所以应随时给予抛光复原。透明塑件要求型腔和型芯的表面粗糙度相同，而不透明塑件则根据使用情况来决定它们的表面粗糙度。

塑件的表面粗糙度可参照《塑料件表面粗糙度标准——不同加工方法和不同材料所能达到的表面粗糙度》选取，见表161。

<table>
<thead>
<tr>
<th>加工方法</th>
<th>材料</th>
<th>Ra值参数范围</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMMA</td>
<td>0.025 0.050 0.100 0.200 0.40 0.80 1.60 3.20 6.30 12.50 25</td>
</tr>
<tr>
<td></td>
<td>ABS</td>
<td>— — — — — — — — — — — — —</td>
</tr>
<tr>
<td></td>
<td>AS</td>
<td>— — — — — — — — — — — — —</td>
</tr>
<tr>
<td></td>
<td>PBT</td>
<td>— — — — — — — — — — — — —</td>
</tr>
<tr>
<td></td>
<td>GS</td>
<td>— — — — — — — — — — — — —</td>
</tr>
<tr>
<td></td>
<td>PB</td>
<td>— — — — — — — — — — — — —</td>
</tr>
<tr>
<td></td>
<td>PC</td>
<td>— — — — — — — — — — — — —</td>
</tr>
<tr>
<td></td>
<td>PVC</td>
<td>— — — — — — — — — — — — —</td>
</tr>
</tbody>
</table>

GB/T 1423
2. 塑件表观质量

塑件的表观质量指的是塑件成形后的表观缺陷状态，如常见的缺料、溢料、飞边、凹陷、气孔、熔接痕、银纹、翘曲与收缩、尺寸不稳定等。它们是由于塑件成形工艺条件、塑件成形原材料选择、模具总体设计等多种因素造成的。成形时塑件常见的表观缺陷及其产生原因见表 (0 () 和表 (0 (')。

<table>
<thead>
<tr>
<th>制品表观缺陷</th>
<th>产生的原因</th>
</tr>
</thead>
</table>
| 塑件不完整 | 注射量不够，加料量及塑化能力不足；料筒、喷嘴及模具温度偏低；注射压力太低；注射速度太慢或太快；流道或浇口太小，浇口数目不够，位置不当；飞边溢料过多；塑件壁太薄，形状复杂且面积大；原料流动性太差，或含水分及挥发物多；塑件四周飞边过大；分型面贴合不严，有间隙，型腔和型芯部分滑动零件间隙过大；模具强度和刚性差；料筒、喷嘴及模具温度太高；注射压力太大、锁模力不足或锁模机构不良，注射机定、动模板不平行；原料流动性太大；加料量过多。

1–14 1–15

<table>
<thead>
<tr>
<th>1–14</th>
<th>1–15</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>①</td>
</tr>
<tr>
<td>②</td>
<td>②</td>
</tr>
<tr>
<td>③</td>
<td>③</td>
</tr>
<tr>
<td>④</td>
<td>④</td>
</tr>
<tr>
<td>⑤</td>
<td>⑤</td>
</tr>
<tr>
<td>⑥</td>
<td>⑥</td>
</tr>
<tr>
<td>⑦</td>
<td>⑦</td>
</tr>
<tr>
<td>⑧</td>
<td>⑧</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1–14</th>
<th>1–15</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>①</td>
</tr>
<tr>
<td>②</td>
<td>②</td>
</tr>
<tr>
<td>③</td>
<td>③</td>
</tr>
<tr>
<td>④</td>
<td>④</td>
</tr>
<tr>
<td>⑤</td>
<td>⑤</td>
</tr>
<tr>
<td>⑥</td>
<td>⑥</td>
</tr>
<tr>
<td>制品表观缺陷</td>
<td>产生的原因</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>塑件有气泡</td>
<td>质料干燥不良，含水分或挥发物；料温高，加热时间长，塑料存在降解、分解；注射速度太快；注射压力太小；模温太低，易出真空泡；模具排气不良</td>
</tr>
<tr>
<td>塑件凹陷</td>
<td>加料量不足；料温太高、模温也高，冷却时间短；塑件设计不合理，壁太厚或厚薄不均；注射及保压时间太短；注射压力不足；注射速度太快；浇口位置不当，不利于供料</td>
</tr>
<tr>
<td>塑件尺寸不稳定</td>
<td>注射机的电气、液压系统不稳定；加料量不稳定；塑料颗粒不均，收缩率不稳定；成形条件（温度、压力、时间）变化，成形周期不一致；浇口太小，多型腔时各进料口大小不一致，进料不平衡；模具精度不良，活动零件动作不稳定，定位不准确</td>
</tr>
<tr>
<td>塑件粘模</td>
<td>注射压力太高，注射时间太长或太短；模具温度太高；浇口尺寸太大或位置不当；模腔表面粗糙度过大或有划痕；脱模斜度太小，不易脱模；推出位置结构不合理</td>
</tr>
<tr>
<td>熔接痕</td>
<td>料温太低，塑料流动性太差；注射压力太小，注射速度太低；浇注系统流程长、截面积小，进料口尺寸及形状、位置不对，料流阻力大；塑件形状复杂，壁太薄；冷料穴设计不合理</td>
</tr>
<tr>
<td>塑件表面出现波纹</td>
<td>料温低，模温、喷嘴温度也低；注射压力小，注射速度低；冷料穴设计不合理；塑料流动性差；模具冷却系统设计不合理；流道曲折、狭窄，表面粗糙</td>
</tr>
<tr>
<td>制品表观缺陷</td>
<td>产生的原因</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>塑件翘曲变形</td>
<td>模具温度太高，冷却时间不够；塑件形状设计不合理，薄厚不均，相差太大，强度不足；嵌件分布不合理，预热不足；塑料分子取向作用太大；模具推出位置不当，受力不均；保压补缩不足，冷却不均，收缩不均。</td>
</tr>
<tr>
<td>塑件分层脱皮</td>
<td>不同塑料混杂；同一种塑料不同级别相混；塑化不均匀；原料污染或混入异物。</td>
</tr>
<tr>
<td>塑件表面不平或产生波纹</td>
<td>物料黏度低；水分及挥发物含量大；成形时间（主要指交联固化时间）短；模具加热不均匀。</td>
</tr>
<tr>
<td>塑件表面起泡和有气眼</td>
<td>物料中的水分及挥发物含量太多，排气不充分；模温过高或过低；成形压力低或固化时间短，成形压缩率太大，致使物料包裹空气过多。</td>
</tr>
<tr>
<td>塑件颜色不均或有雾斑</td>
<td>物料中的着色剂分散程度差；流动性不好或物料发生变质；物料中混有异物，制品欠熟。</td>
</tr>
<tr>
<td>塑件变色</td>
<td>模温太高。</td>
</tr>
<tr>
<td>塑件尺寸不合格</td>
<td>加料量不准；物料中的水分与挥发物含量变化大；操作有误或工艺控制条件发生变化；物料不合格。</td>
</tr>
</tbody>
</table>

1-15 热固性塑料制品常见的表观缺陷及其产生原因

<table>
<thead>
<tr>
<th>制品表观缺陷</th>
<th>产生的原因</th>
</tr>
</thead>
<tbody>
<tr>
<td>塑件表面不平或产生波纹</td>
<td>物料黏度低；水分及挥发物含量大；成形时间（主要指交联固化时间）短；模具加热不均匀。</td>
</tr>
<tr>
<td>塑件表面起泡和有气眼</td>
<td>物料中的水分及挥发物含量太多，排气不充分；模温过高或过低；成形压力低或固化时间短，成形压缩率太大，致使物料包裹空气过多。</td>
</tr>
<tr>
<td>塑件颜色不均或有雾斑</td>
<td>物料中的着色剂分散程度差；流动性不好或物料发生变质；物料中混有异物，制品欠熟。</td>
</tr>
<tr>
<td>塑件变色</td>
<td>模温太高。</td>
</tr>
<tr>
<td>塑件尺寸不合格</td>
<td>加料量不准；物料中的水分与挥发物含量变化大；操作有误或工艺控制条件发生变化；物料不合格。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>制品表观缺陷</th>
<th>产生的原因</th>
</tr>
</thead>
<tbody>
<tr>
<td>塑件表面不平或产生波纹</td>
<td>物料黏度低；水分及挥发物含量大；成形时间（主要指交联固化时间）短；模具加热不均匀。</td>
</tr>
<tr>
<td>塑件表面起泡和有气眼</td>
<td>物料中的水分及挥发物含量太多，排气不充分；模温过高或过低；成形压力低或固化时间短，成形压缩率太大，致使物料包裹空气过多。</td>
</tr>
<tr>
<td>塑件颜色不均或有雾斑</td>
<td>物料中的着色剂分散程度差；流动性不好或物料发生变质；物料中混有异物，制品欠熟。</td>
</tr>
<tr>
<td>塑件变色</td>
<td>模温太高。</td>
</tr>
<tr>
<td>塑件尺寸不合格</td>
<td>加料量不准；物料中的水分与挥发物含量变化大；操作有误或工艺控制条件发生变化；物料不合格。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>制品表观缺陷</th>
<th>产生的原因</th>
</tr>
</thead>
<tbody>
<tr>
<td>塑件表面不平或产生波纹</td>
<td>物料黏度低；水分及挥发物含量大；成形时间（主要指交联固化时间）短；模具加热不均匀。</td>
</tr>
<tr>
<td>塑件表面起泡和有气眼</td>
<td>物料中的水分及挥发物含量太多，排气不充分；模温过高或过低；成形压力低或固化时间短，成形压缩率太大，致使物料包裹空气过多。</td>
</tr>
<tr>
<td>塑件颜色不均或有雾斑</td>
<td>物料中的着色剂分散程度差；流动性不好或物料发生变质；物料中混有异物，制品欠熟。</td>
</tr>
<tr>
<td>塑件变色</td>
<td>模温太高。</td>
</tr>
<tr>
<td>塑件尺寸不合格</td>
<td>加料量不准；物料中的水分与挥发物含量变化大；操作有误或工艺控制条件发生变化；物料不合格。</td>
</tr>
<tr>
<td>制品表观缺陷</td>
<td>产生的原因</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>塑件飞边多而厚</td>
<td>加料量大,物料黏度高; 模具设计不合理或模板不平; 分型面未密合或分型面间出现进料</td>
</tr>
<tr>
<td>塑件脱模时呈柔软状</td>
<td>塑件“欠熟”; 物料含水量大; 润滑剂用量太大</td>
</tr>
<tr>
<td>塑件黏膜成形时间短,模温低; 无润滑剂或用量不当; 模腔表壁粗糙</td>
<td>塑件结构设计</td>
</tr>
</tbody>
</table>

1.5.3 塑料成形基础

1.5.3.1 塑件设计

塑料结构设计的主要内容包括塑件形状、壁厚、脱模斜度、加强肋、支承面、圆角、孔、螺纹、齿轮、嵌件、文字、符号及表面装饰等。

1. **形状**
 - 塑件的内外表面形状应在满足使用要求的情况下尽可能易于成形。由于侧抽芯和瓣合模不但使模具结构复杂,制造成本提高,而且还会在分型面上留下飞边,增加塑件的修整量。因此,塑件设计时可适当改变塑件的结构,尽可能避免侧孔与侧凹,以简化模具的结构,表为改变塑件形状以利于成形的典型实例。
 - 塑件内侧凹较浅并允许带有圆角时,则可以用整体凸模采取强制脱模的方法使塑件从凸模上脱下,如图所示。但此时塑件在脱模温度下应具有足够的弹性,以使塑件在强制脱下时不会变形,例如聚乙烯、聚丙烯、聚甲醛等能适应这种情况。塑件外侧凹凸也可以强制脱模,如图所示。但是,多数情况下塑件的侧向凹凸不可能强制脱模,此时应采用侧向分

1.5.3.2 塑件设计

1. **形状**
 - ...
型抽芯结构的模具。

图1-15

可强制脱模的侧向凹、凸结构

表1-16

<table>
<thead>
<tr>
<th>序号</th>
<th>不合</th>
<th>合</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>改变塑件形状后，则不需要采用侧抽式或瓣合分型的模具</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>应避免塑件表面横向凸台，以便于脱模</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>塑件外侧凹，必须采用瓣合凹模，使塑料模具结构复杂，塑件表面有接痕</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>塑件内侧凹，抽芯困难</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>将横向侧孔改为垂直向孔，可免去侧抽芯机构</td>
</tr>
</tbody>
</table>

2. 塑件设计

· 塑件冷却后产生收缩会紧紧包在凸模抽芯型芯上，或由于黏附作用，塑件紧贴在凹模型腔。

\[
(a) \quad \frac{A-B}{B} \times 100\% \leq 5\%
\]

\[
(b) \quad \frac{A-B}{C} \times 100\% \leq 5\%
\]
因此，为了便于从塑件中抽出型芯或从型腔中脱出塑件，防止在脱模时擦伤塑件，在设计塑件时必须使塑件内外表面沿脱模方向留有足够的斜度，在模具上即称为脱模斜度，如图1-16所示。

脱模斜度的大小取决于塑件的性能、几何形状（如高度或深度、壁厚）及型腔表面状态（如表面粗糙度、加工纹路等）。硬质塑料比软质塑料脱模斜度大；形状较复杂，或成形孔较多的塑件取较大的脱模斜度；塑料高度较大，孔较深，则取较小的脱模斜度；壁厚增加，内孔包紧型芯的力大，脱模斜度也应取大些。

脱模斜度的标注根据塑件的内外尺寸而定：对于塑件内孔，以型芯小端为基准，尺寸符合图样要求，斜度沿扩大的方向取得；对于塑件外形，以型腔（凹模）大端为基准，尺寸符合图样要求，斜度沿缩小方向取得。一般情况下，脱模斜度不包括在塑件的公差范围内。

表1-17列出了常见塑料的脱模斜度。

当要求开模后塑件留在型腔内时，塑件内表面的脱模斜度应大于塑件外表面的脱模斜度，此时表中数值反之。

表1-17 塑料常用的脱模斜度

<table>
<thead>
<tr>
<th>塑料名称</th>
<th>型腔</th>
<th>型芯</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚乙烯、聚丙烯、软聚氯乙烯、聚酰胺、氯化聚醚、聚碳酸酯、聚砜</td>
<td>25’～45’</td>
<td>20’～45’</td>
</tr>
<tr>
<td>硬聚氯乙烯、聚碳酸酯、聚砜</td>
<td>35’～40’</td>
<td>30’～50’</td>
</tr>
<tr>
<td>聚苯乙烯、有机玻璃、聚甲醛</td>
<td>35’～1°30’</td>
<td>30’～40’</td>
</tr>
<tr>
<td>ABS</td>
<td>25’～40’</td>
<td>20’～50’</td>
</tr>
</tbody>
</table>

注：本表所列脱模斜度适于开模后塑件留在型芯上的情形。

壁厚

塑件的壁厚对塑件质量有很大影响。壁厚过小成形时流动阻力大，大型复杂塑件就难以充满型腔。塑件壁厚的最小尺寸应满足以下方面要求：具有足够的强度和刚度；脱模时能经受推出机构的推出力而不变形；能承受装配时的紧固力。塑件最小壁厚值随塑料品种和塑件大小不同而异。

壁厚过大，不但造成原料的浪费，而且对热固性塑料成形来说增加了模压成形时间，并易造成固化不完全；对热塑性塑料则增加了冷却时间，降低了生产率，另外也影响产品质量，如产生气泡、缩孔、凹陷等缺陷。所以，塑件的壁厚应有一个合理的范围。

热塑性塑料易于成形薄壁塑件，其最小壁厚能达到0.25 mm，但一般不宜小于0.6～
热固性塑料的小型塑件,壁厚取 0.6 ~ 2.5 mm,大型塑件取 3.2 ~ 8 mm。表 1 - 18 为热塑性塑件最小壁厚及推荐壁厚参考值,表 1 - 19 为根据外形尺寸推荐的热固性塑件壁厚值。

表 1 - 18 热塑性塑件最小壁厚及推荐壁厚

<table>
<thead>
<tr>
<th>塑料名称</th>
<th>塑件外形高度</th>
<th>50 mm以下壁厚</th>
<th>一般制件壁厚</th>
<th>大型制件壁厚</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚酰胺 (PA)</td>
<td>0.45</td>
<td>1.75 ~ 2.60</td>
<td>>2.4 ~ 3.2</td>
<td></td>
</tr>
<tr>
<td>聚苯乙烯 (PS)</td>
<td>0.75</td>
<td>2.25 ~ 2.60</td>
<td>>3.2 ~ 5.4</td>
<td></td>
</tr>
<tr>
<td>粉状填料的酚醛塑料</td>
<td>0.75</td>
<td>2.29 ~ 2.60</td>
<td>>3.2 ~ 5.4</td>
<td></td>
</tr>
<tr>
<td>纤维状填料的酚醛塑料</td>
<td>0.80</td>
<td>2.50 ~ 2.80</td>
<td>>4.0 ~ 6.5</td>
<td></td>
</tr>
<tr>
<td>氨基塑料</td>
<td>0.80</td>
<td>2.40 ~ 2.60</td>
<td>>3.2 ~ 5.4</td>
<td></td>
</tr>
<tr>
<td>粉状填料的氨基塑料</td>
<td>0.85</td>
<td>2.25 ~ 2.50</td>
<td>>2.4 ~ 3.2</td>
<td></td>
</tr>
<tr>
<td>聚丙烯 (PP)</td>
<td>0.85</td>
<td>2.45 ~ 2.75</td>
<td>>2.4 ~ 3.2</td>
<td></td>
</tr>
<tr>
<td>聚酯玻璃纤维填料的塑料</td>
<td>0.85</td>
<td>2.35 ~ 2.80</td>
<td>>2.5 ~ 3.4</td>
<td></td>
</tr>
<tr>
<td>聚酯无机物填料的塑料</td>
<td>0.95</td>
<td>2.60 ~ 2.80</td>
<td>>3.0 ~ 4.5</td>
<td></td>
</tr>
<tr>
<td>硬聚氯乙烯 (PVC)</td>
<td>1.15</td>
<td>2.60 ~ 2.80</td>
<td>>3.2 ~ 5.8</td>
<td></td>
</tr>
<tr>
<td>聚碳酸酯 (PC)</td>
<td>1.20</td>
<td>2.75 ~ 3.10</td>
<td>>3.5 ~ 6.4</td>
<td></td>
</tr>
<tr>
<td>聚苯醚 (PE)</td>
<td>0.60</td>
<td>2.25 ~ 2.60</td>
<td>>2.4 ~ 3.2</td>
<td></td>
</tr>
</tbody>
</table>

表 1 - 19 热固性塑件壁厚

<table>
<thead>
<tr>
<th>壁厚范围</th>
<th>~50</th>
<th>>50 ~ 100</th>
<th>>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚酰胺 (PA)</td>
<td>0.7 ~ 2.0</td>
<td>2.0 ~ 3.0</td>
<td>5.0 ~ 6.5</td>
</tr>
<tr>
<td>聚苯乙烯 (PS)</td>
<td>1.5 ~ 2.0</td>
<td>2.5 ~ 3.5</td>
<td>6.0 ~ 8.0</td>
</tr>
<tr>
<td>粉状填料的酚醛塑料</td>
<td>1.0</td>
<td>1.3 ~ 2.0</td>
<td>3.0 ~ 4.0</td>
</tr>
<tr>
<td>聚碳酸酯 (PC)</td>
<td>1.0 ~ 2.0</td>
<td>2.4 ~ 3.2</td>
<td>>4.8</td>
</tr>
<tr>
<td>聚苯醚 (PE)</td>
<td>1.0 ~ 2.0</td>
<td>3.2 ~ 4.8</td>
<td>>4.8</td>
</tr>
</tbody>
</table>
表 1-20

<table>
<thead>
<tr>
<th>序号</th>
<th>不合 理</th>
<th>合理</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.

加强肋的形状尺寸如图所示。若塑件壁厚为 d, 则加强肋高度 $h = (1.5 \times d + 0.5\delta)$, 肋条宽 $b = (0.8 \times d + 0.8\delta)$, 肋根过渡圆角 $r = (1/4 \times d + 0.5\delta)$, 收缩角 $\alpha = 2^\circ \sim 5^\circ$.
在塑件上设置加强肋有以下要求:

1. 加强肋的厚度应小于塑件厚度,并与壁用圆弧过渡;
2. 加强肋端面高度不应超过塑件高度,宜低于 expiration.
3. 尽量采用数个高度较矮的肋代替孤立的高肋,肋与肋间距离应大于肋宽的两倍;
4. 加强肋的设置方向除应与受力方向一致外,还应尽可能与熔体流动方向一致,以免料流受到搅乱,使塑件的韧性降低。

表所示为加强肋设计的典型实例。

<table>
<thead>
<tr>
<th>序号</th>
<th>不合理</th>
<th>合理</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>过厚处应减薄并设置加强肋以保持原有强度</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>过高的塑件应设置加强肋,以减薄塑件壁厚</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>平板状塑件,加强肋应与料流方向平行,以免造成充模阻力过大和降低塑件韧性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>非平板状塑件,加强肋应交错排列,以避免塑件产生翘曲变形</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

加强肋应设计得矮一些,与支承面的间隙应大于 0.5 mm。
加强肋常常引起塑件局部凹陷，可用某些方法来修饰和隐藏这种凹陷，如图所示。

除了采用加强肋外，薄壳状的塑件可制成球面或拱曲面，这样可以有效地增加刚性和减少变形，如图所示。

对于薄壁容器的边缘，可按图所示设计来增加刚性和减少变形。

矩形薄壁容器采用软塑料时，侧壁易出现内凹变形，因此在不影响使用的情况下，可将塑件各边均设计成向外凸的弧状，使变形不易看出，如图所示。
塑件的支承面应保证其稳定性，不宜以塑件的整个底面作为支承面，因为塑件稍许翘曲或变形将会使底面不平。通常采用的是几个凸起的脚底或凸边支承，如图所示。图以整个底面做支承面是不合理的，图和图分别以边框凸起和脚底作为支承面，这样设计较合理。塑件的支承面凸台是塑件上突出的锥台或支承块，为诸如自攻螺钉或螺杆拧入件之类的紧固件提供坐落部位，或加强塑件上的孔的强度。凸台设计应遵循以下原则：(1)凸台应尽可能设在塑件转角处。 (2)应有足够的脱模斜度。 (3)侧面应设有角撑，以分散负荷压应力。 (4)凸台与基面接合处应有足量的圆弧过渡。 (5)凸台直径至少应为孔径的两倍。 (6)凸台高度一般不应超过凸台外径的两倍。 (7)凸台壁厚不应超过基面壁厚的，以为好。表为凸台设计实例。为了避免应力集中，提高塑件的强度，改善熔体的流动情况和便于起模，在塑件各内外表面的连接处均应采用过渡圆弧。此外，圆弧还使塑件变得美观，并且模具型腔在淬火或使用时也不致因应力集中而开裂。图表示内圆角、壁厚与应力集中系数之间的关系。由图可见，将控制在的范围内较为合理。
图 1.23 与应力集中系数的关系曲线

孔的设计

塑件上常见的孔有通孔、盲孔、异形孔（形状复杂的孔）和螺纹孔等。这些孔均应设置在不宜削弱塑件强度的地方，在孔与孔之间、孔与边壁之间应留有足够的距离。热固性塑料两孔之间及孔与边壁之间的间距与孔径的关系见表 1.23。当两孔直径不一样时，按小的孔径取值。热塑性塑料两孔之间及孔与边壁之间的关系可按表 1.23 中所列数值的

<table>
<thead>
<tr>
<th>孔径</th>
<th>孔间距</th>
<th>孔边距</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.5</td>
<td>>1.5 ～3</td>
<td>>3 ～6</td>
</tr>
<tr>
<td>> 1.5</td>
<td>>3 ～6</td>
<td>>6 ～10</td>
</tr>
<tr>
<td>> 6</td>
<td>>10 ～18</td>
<td>>18 ～30</td>
</tr>
</tbody>
</table>

表 1.23 热固性塑件孔间距、孔边距与孔径关系

7. 孔的加强

在图 1.23 中型芯一端固定，这种方法简单，但会出现不易修整的横向飞边，且当孔较深或孔径较小时易弯曲。

在图 1.23 中用一端固定的两个型芯来成形，并使一个型芯径向尺寸比另一个大。“（+），这样即使稍有不同心，也不致引起安装和使用上的困难，其特点是型芯长度缩短一半，稳定性增加。这种成形方式适用于较深的孔，且孔径要求不很高的场合。

在图 1.23 中型芯一端固定，一端导向支承，这种方法使型芯有较好的强度和刚度，又能保证同心度，较为常用，但其导向部分因导向误差发生磨损，以至会产生圆周纵向溢料。型芯

图 1.24 孔的加强

1. 25

1. 25a

1. 25b

1. 25c

0. 5～1 mm
不论用什么方法固定,孔深均不能太大,否则型芯会弯曲。压缩成形时尤应注意,通孔深度应不超过孔径的1/4倍。

图1.25:通孔的成形方法

(a) 盲孔

盲孔只能用一端固定的型芯来成形,因此其深度应浅于通孔。根据经验,注射成形或压注成形时,孔深应不超过直径的1/4倍。压缩成形时,孔深应浅些,平行于压制方向的孔一般不超过直径的1/4倍,垂直于压制方向的孔一般不超过直径的2/5倍。直径小于24.5的孔或深度太大(大于以上值)的孔最好用成形后再机械加工的方法获得。如能在成形时于钻孔位置压出定位浅孔,则将给后加工带来很大方便。

(b) 异形孔

当塑件孔为异形孔(斜度孔或复杂形状孔)时,常常采用拼合方法来成形,这样可避免侧向抽芯。图1.25所示为几个典型的例子。

图1.25用拼合型芯成形异形孔

螺纹设计

塑件上的螺纹既可直接用模具成形,也可在成形后用机械加工成形。对于需要经常装拆和受力较大的螺纹,应采用金属螺纹嵌件。塑料上的螺纹应选用较大的螺牙尺寸,直径较小时也不宜选用细牙螺纹,否则会影响使用强度。表1.26列出塑件螺纹的使用范围。
塑件螺纹的选用范围

<table>
<thead>
<tr>
<th>公称直径/mm</th>
<th>公称标准螺纹</th>
<th>1级细牙螺纹</th>
<th>2级细牙螺纹</th>
<th>3级细牙螺纹</th>
<th>4级细牙螺纹</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤3</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>>3~6</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>>6~10</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>>10~18</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>>18~30</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>>30~50</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

注：表中“+”为建议采用的范围。

塑件上螺纹的直径不宜过小，螺纹的外径不应小于4 mm，内径不应小于2 mm，精度不超过%级。如果模具上螺纹的螺距未考虑收缩值，那么塑件螺纹与金属螺纹的配合长度则不能太长，一般不大于螺纹直径的1/30~20倍，否则会因干涉造成附加内应力，使螺纹连接强度降低。

为了防止螺纹最外圈崩裂或变形，应使螺纹最外圈和最里圈留有台阶，如图1.27和图1.28所示。螺纹的始端或终端应逐渐开始和结束，有一段过渡长度，其数值可按表1.24选取。
嵌件设计

在塑件中镶入嵌件的目的是提高塑件局部的强度、硬度、耐磨性、导电性、导磁性等，或者是增加塑件的尺寸和形状的稳定性，或者是降低塑料的消耗。嵌件的材料有金属、玻璃、木材和已成形的塑料等，其中金属嵌件的使用最为广泛，其结构见图所示。图（a）为圆筒形嵌件；图（b）为带台阶圆柱形嵌件；图（c）为片状嵌件；图（d）为细杆状贯穿嵌件，汽车方向盘即是一例。

金属嵌件的设计原则：

（1）嵌件应牢固地固定在塑件中。图（e）金属嵌件在塑件内的固定方式。为了防止嵌件受力时在塑件内转动或脱出，嵌件表面必须设计适当的凸凹形状。图（f）所示为最常用的菱形滚花，其抗拉和抗扭强度都较大；图（g）所示为直纹滚花，这种滚花在嵌件较长时允许塑件沿轴向少许伸长，以降低这一方向的内应力，但在这种嵌件上必须开有环形沟槽，以免在受力时被拔出；图（h）所示为六角形嵌件，因其尖角处易产生应力集中，故

1. 29

1. 29a

1. 29b

1. 29c

1. 29d

1. 30

1. 30a

1. 30b

1. 30c
较少采用；图所示为用孔眼、切口或局部折弯来固定的片状嵌件；薄壁管状嵌件也可用边缘折弯法固定，如图所示；针状嵌件可采用将其中一段轧扁或折弯的办法固定，如图所示。

模具内的嵌件应定位可靠。模具中的嵌件在成形时要受到高压熔体流的冲击，可能发生位移和变形，同时熔料还可能挤入嵌件上预制的孔或螺纹线中，影响嵌件使用，因此嵌件必须可靠定位，并要求嵌件的高度不超过其定位部分直径的倍。图所示为外螺纹嵌件在模内的固定方法。图采用一凸肩配合的形式，既可增加嵌件插入后的稳定性，又可阻止塑料流入螺纹中；图为嵌件上有一凸出的圆环，在成形时圆环被压紧在模具上而形成密封环，以阻止塑料的流入。

图所示外螺纹嵌件在模内的固定；图所示内螺纹嵌件在模内固定的形式：图嵌件直接插在模内的圆形光杆上的形式；图和图，为用一凸出的台阶与模具上的孔相配合的形式，以增加定位的稳定性和密封性；图采用内部台阶与模具上的插入杆配合。

一般情况下，注射成形时嵌件与模板安装孔的配合为；压缩成形时嵌件与模板安装孔的配合为。当嵌件过长或呈细长杆状时，应在模具内设支撑以免嵌件弯曲，但这时在塑件上会留下孔，如图所示。

嵌件周围的壁厚应足够大。由于金属嵌件与塑件的收缩率相差较大，致使嵌件周围的塑料存在很大的内应力，如果设计不当，则会造成塑件的开裂，而保持嵌件周围适当的塑料层厚度可以减少塑件的开裂倾向。对于酚醛塑料及与之相似的热固性塑料的金属嵌件，周围塑料层厚度可参见表。另外，嵌件不应带有尖角，以减少应力集中。
细长嵌件在模内支撑固定

—嵌件；—支撑柱

金属嵌件周围塑料层的厚度

例 金属嵌件直径

周围塑料层最小厚度

顶部塑料层最小厚度

热塑性塑料注射成形时，应将大型嵌件预热到接近物料温度。

对于应力难以消除的塑料，可在嵌件周围覆盖一层高聚物弹性体或在成形后进行退火。嵌件的顶部也有足够的塑料层厚度，否则会出现鼓泡或裂纹。

成形带嵌件的塑件会降低生产效率，使生产不易实现自动化，因此在设计塑件时应尽可能避免使用嵌件。

由于装潢或某些特殊要求，塑件上有时需要带有文字或图案、标记符号及花纹（或表面彩饰）。

标记符号应放在分型面的平行方向上，并有适当的斜度以便脱模。若标志符号为凸形，在模具上即为凹形，加工较容易，但标志符号容易被磨损。若标志符号为凹形，在模具上即为凸起，用一般机械加工难以满足，需要用特殊加工工艺，但凹入标记符号可涂印各种装饰颜色，增添美观感。图所示是在凹框内设置凸起的标记符号，它可把凹框制成镶块嵌入模具内。这样既易于加工，标记符号在使用时又不易被磨损破坏，最为常用。

现在模具制造多采用电铸成形、冷挤压、照相化学腐蚀或电火花等加工技术。塑件上成形的标记符号，凸出的高度不小...
于线条宽度不小于！ "！，通常以！ "！为宜。两条线间距离不小于！ "！，边框可比图案纹高出！ "！以上。标记符号的脱模斜度应大于！ (！)。

每道塑料表面彩饰可以隐蔽塑件表面在成形过程中产生的疵点、银纹等缺陷，同时增加了产品的外观美感，如收音机外壳采用皮革纹装饰。目前对某些塑件常用彩印、胶印、丝印和喷镀等方法进行表面彩饰。

1. 塑料是由哪些成分组成的? 各种成分的作用是什么?
2. 根据塑料中树脂的分子结构和热性能，塑料分为哪几种，其特点是什么?
3. 塑料有哪些主要使用性能?
4. 阐述注射成形的成形原理和工艺过程。
5. 影响热塑性塑料收缩率的主要因素有哪些?
6. 影响热固性塑料流动性的基本因素有哪些?
7. 挤出成形方法有什么特点? 其主要工艺参数有哪些?
8. 阐述压注成形的优缺点。
9. 塑料制作设计必须遵循的原则是什么?
10. 对题(图所示塑件的设计进行合理化分析，并对不合理设计进行修改。
第2章

2.1

2.1.1

塑料模具与设备

塑料模具种类很多，这里主要介绍常见的注射模、压缩模、压注模和挤出模。

注射模是安装在注射机上，完成注射成形工艺所使用的模具。

注射模的种类很多，其结构与塑料的品种、塑件的结构和注射机的种类等很多因素有关。一般情况，注射模是由成形部件、浇注系统、导向部件、推出机构、调温系统、排气系统和支承零部件组成，如果塑件有侧向的孔或凸台，注射模还包括侧向分型与抽芯机构。图2-1为最具有代表性单分型面注射模，表为常见注射模模具的结构组成。

图2-1单分型面注射模的结构

(a) 合模状态 (b) 开模状态
2.1.2 表 2-1

<table>
<thead>
<tr>
<th>结 构 名 称</th>
<th>零 件 名 称(以图为例)</th>
</tr>
</thead>
<tbody>
<tr>
<td>成形部件</td>
<td>动模板 、定模板和凸模</td>
</tr>
<tr>
<td>浇注系统</td>
<td>浇口套 、拉料杆和动模板</td>
</tr>
<tr>
<td>导向部件</td>
<td>导柱 、导套</td>
</tr>
<tr>
<td>推出机构</td>
<td>推板 、推杆固定板、拉料杆、推板导柱和推板导套</td>
</tr>
<tr>
<td>调温系统</td>
<td>冷却水道</td>
</tr>
<tr>
<td>排气系统</td>
<td>对于小塑料件的模具,可直接利用分型面或推杆等与模具的间隙排气</td>
</tr>
<tr>
<td>支承零部件</td>
<td>定模座板 、定位圈 、支承板 、支承钉和垫板</td>
</tr>
<tr>
<td>侧向分型与抽芯机构</td>
<td>当有些塑件有侧向的凹凸形状的孔或凸台时,须先把侧向的凹凸形状的瓣合模块或侧向的型芯从塑件上脱开或抽出</td>
</tr>
</tbody>
</table>

2.1.2.1 塑料模具与设备

压缩模

压缩模是塑料完成压缩成形的模具,压缩模具属于模具中比较简单的一种,它主要是用来成形热固性塑料。

典型的压缩模具结构如图所示,它大体上由固定在压力机上滑块的上模部分和固定在压力机下工作台的下模部分组成。压缩模可分成六大部分,见表。
压缩模的结构组成

序号 名称 说明

型腔

型腔是塑件成形的模具部位，另外，与加料腔一起起到盛料的作用。图中的模具型腔由上凸模、下凸模、加料腔等组成。

加料腔

由于塑粉的体积较大，加料腔应比型腔深一些。

导向机构

图中的导向机构是由四个导柱和导套组成，是为了保证合模的准确性；而推出机构的导向是为了保证推出机构的上下运动平稳。

侧向抽芯与分型

成形具有侧向凸凹或孔的结构时，模具应设置各种侧向抽芯与分型机构。

推出机构

压缩模必须设计推出机构，图中的推出机构由推板、推杆固定板、推杆等零件组成。

加热系统

热固性塑料压缩成形靠模具加热，模具的加热形式有：电加热、蒸汽加热、煤油气或天然气加热等，以电加热为常见，图中的加热板、中开设的圆孔，是供插入电热棒加热模具用的。

压注模

压注模是塑料完成压注成形的模具。压注成形和压缩成形都是热固性塑料的成形方法，但压注模和压缩模最大的区别在于，压注模有供塑料原料加热至熔融的独立加热腔。压注模可分为罐式压注模和柱塞式压注模，而罐式压注模又分为移动式压注模和固定式压注模。
图 2-3 罐式移动式压注模的结构

1—_—下模板；2—_—固定板；3—_—凹模；4—_—加料腔；5—_—压柱；6—_—导柱；7—_—型芯

压注模的结构也可分为六大部分，见表 2-3。

表 2-3 压注模的机构组成

<table>
<thead>
<tr>
<th>序号</th>
<th>机构</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>成形零件</td>
<td>成形塑件的模具零部件，同注射模、压缩模一样，由凸模、凹模和型芯等组成</td>
</tr>
<tr>
<td>2</td>
<td>加料装置</td>
<td>加料装置由加料腔和压柱组成</td>
</tr>
<tr>
<td>3</td>
<td>浇注系统</td>
<td>压注模的浇注系统与注射模相似</td>
</tr>
<tr>
<td>4</td>
<td>加热系统</td>
<td>压注模的加热方式多采用电加热方式，固定式压注模的压柱、上模和下模都要设计加热装置；移动式压注模利用液压机的上、下加热板加热</td>
</tr>
<tr>
<td>5</td>
<td>排溢系统</td>
<td>压注模成形塑件时，排气是相当重要的，不但要设计排气槽，还要设计溢料槽，将余料排出，以保证塑件质量</td>
</tr>
<tr>
<td>6</td>
<td>其他部分</td>
<td>压注模根据塑件及模具的特点，需要设计导向机构、侧向分型抽芯机构及脱模机构等部分，其结构与注射模及压缩模十分相似</td>
</tr>
</tbody>
</table>

挤压模

3. 挤压成形适用于塑料的管材、棒材、异性截面型材、中空制品的成形，以及单丝、电缆包层、薄膜等的挤出加工。

挤压成形的模具称为挤压机机头，简称机头。塑料在机头内塑化成为均匀的熔体，并通过机头成形为所需要的制品形状。

挤压成形机头的作用:

1. 使熔融的塑料由螺旋运动变成直线运动；
2. 使塑料经过机头而进行进一步的塑化；
3. 产生足够的成形压力，使塑件密实；
4. 成形所需截面形状的连续型材。

由于挤压成形的塑料制品的截面形状各种各样，机头可分为如挤压管材的管机头，挤压棒机头、挤压板机头等。
材的棒机头,挤出片材的片机头,吹塑薄膜的吹塑薄膜机头等,但机头的组成基本是一样的。

以典型的管材挤出成形机头为例,如图所示,其挤出机头主要零件的作用见表。

表 挤出机头主要零件的作用

<table>
<thead>
<tr>
<th>序号</th>
<th>名称</th>
<th>作用</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>口模和芯棒</td>
<td>口模成形塑件的外表面,芯棒成形塑件的内表面</td>
</tr>
<tr>
<td>2</td>
<td>过滤板</td>
<td>过滤网的作用是将塑料熔体由螺旋运动转变为直线运动,过滤杂质,并造成一定压力</td>
</tr>
<tr>
<td>3</td>
<td>分流器</td>
<td>使通过它的塑料熔体分流变成薄环状,平稳地进入成形区,同时进一步加热和塑化。分流器支架主要用于支承分流器和芯棒,同时也能对分流后的塑料熔体加强剪切混合作用。小型分流器和分流器支架可设计成一体</td>
</tr>
<tr>
<td>4</td>
<td>机头体</td>
<td>机头体用来组装并支承机头的各零部件,机头体还需要与挤出机相连接,连接处应密封,以防止塑料熔体的溢出</td>
</tr>
<tr>
<td>5</td>
<td>电加热圈</td>
<td>为了保证塑料熔体在机头中的正常流动及挤出成形质量,机头上一般设有电加热圈</td>
</tr>
<tr>
<td>6</td>
<td>调节螺钉</td>
<td>用来调节控制成形区内的口模和芯棒之间的间隙及同轴度,以保证挤出塑件壁厚均匀,通常调节螺钉的数目定为</td>
</tr>
<tr>
<td>7</td>
<td>定径套</td>
<td>离开成形区的塑料虽已具有给定的形状,但由于塑料的温度仍较高,不能抵抗自重的变形,为此需要用定径套对其进行冷却定形,以使制品获得良好的表面质量、正确的尺寸和几何形状</td>
</tr>
</tbody>
</table>

图 2.4 管材挤出成形机头

1—口模 2—芯棒 3—分流器 4—分流器支架 5—机头体 6—定径套 7—过滤板 8—过滤网 9—分流器支架 10—机头体 11—调节螺钉
2.2 塑料成形设备

2.2.1 注射机

2.5 图2-5

1—定动模板; 2—锁模液压缸; 3—锁模机构; 4—移动模板; 5—顶杆; 6—固定模板; 7—控制台; 8—料筒及加热器; 9—料斗; 10—定量供料装置; 11—注射液压缸

<table>
<thead>
<tr>
<th>图2-5</th>
<th>2-5</th>
<th>2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
当模具浇口处的熔体冻结时，即可卸压。一般来说，卸压完成后，螺杆即可旋转、后退，以完成下一次的加料、预塑化过程。预塑完成以后，注射装置撤离模具的主浇道口。开模、顶出塑件。模具型腔内的塑件经冷却定形后，锁模机构开模，并且推出模具内的塑件。

注射机分类

(1) 注射机按外形特征可分为如下三类，见表2-6。

<table>
<thead>
<tr>
<th>类别</th>
<th>图说</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>立式注射机</td>
<td></td>
<td>注射装置与锁模机构的轴线呈一直线垂直排列。优点：占地少，模具拆装方便，易于安放嵌件。缺点：重心高，加料困难；推出的塑件要由手工取出，不易实现自动化；容积较小。</td>
</tr>
<tr>
<td>卧式注射机</td>
<td></td>
<td>注射装置与锁模装置的轴线呈一直线水平排列，使用广泛。优点：重心低，稳定；加料、操作及维修方便；塑件可自行脱落，易实现自动化。缺点：模具安装麻烦，嵌件安放不稳，机器占地较大。</td>
</tr>
</tbody>
</table>
2. 其他注塑机的结构及用途

2.1 注射装置

注射装置与锁模装置的轴线相互垂直排列。优点、缺点介于立式注射机和卧式注射机之间。

特别适用于成形中心不允许有浇口痕迹的平面塑件。

2.2 注射机按塑料在料筒的塑化方式分类

表列出了部分国产常用注射机的主要技术参数。
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>额定注射量/cm³</td>
<td>30, 20</td>
<td>30</td>
<td>60</td>
<td>125</td>
<td>200 ~ 400</td>
<td>320</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
</tr>
<tr>
<td>螺杆 (注塞)直径/mm</td>
<td>25, 20</td>
<td>28</td>
<td>38</td>
<td>42</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>85</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>注射压力/MPa</td>
<td>75, 115</td>
<td>119</td>
<td>122</td>
<td>120</td>
<td>109</td>
<td>77.5</td>
<td>145</td>
<td>121</td>
<td>90</td>
<td>106</td>
</tr>
<tr>
<td>注射行程/mm</td>
<td>130</td>
<td>130</td>
<td>170</td>
<td>115</td>
<td>160</td>
<td>150</td>
<td>200</td>
<td>260</td>
<td>280</td>
<td>370</td>
</tr>
<tr>
<td>注射方式</td>
<td>双级双腔</td>
<td>注塞式</td>
<td>注塞式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>螺杆式</td>
<td>螺杆式</td>
</tr>
<tr>
<td>锁模力/kN</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>900</td>
<td>2540</td>
<td>1500</td>
<td>3500</td>
<td>4500</td>
<td>6000</td>
<td>10000</td>
</tr>
<tr>
<td>最大成形面积/cm²</td>
<td>90</td>
<td>90</td>
<td>130</td>
<td>320</td>
<td>645</td>
<td>1000</td>
<td>1800</td>
<td>2600</td>
<td>3800</td>
<td>11000</td>
</tr>
<tr>
<td>最大开模行程/mm</td>
<td>160</td>
<td>160</td>
<td>180</td>
<td>300</td>
<td>260</td>
<td>340</td>
<td>500</td>
<td>700</td>
<td>750</td>
<td>1100</td>
</tr>
<tr>
<td>模具最大厚度/mm</td>
<td>180</td>
<td>180</td>
<td>200</td>
<td>300</td>
<td>406</td>
<td>355</td>
<td>450</td>
<td>700</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>模具最小厚度/mm</td>
<td>60</td>
<td>60</td>
<td>70</td>
<td>200</td>
<td>165</td>
<td>285</td>
<td>300</td>
<td>500</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>喷嘴圆弧半径/mm</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>18</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>喷嘴孔直径/mm</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3, 5, 6, 8</td>
<td>7.5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>顶出形式一</th>
<th>四侧设有顶杆，机械顶出</th>
<th>四侧设有顶杆，机械顶出</th>
<th>中心设有顶杆，机械顶出</th>
<th>两侧设有顶杆，机械顶出</th>
<th>动模板时顶杆，开模时模具顶杆，顶杆采用动模板与顶板相接，机械顶出</th>
<th>中心及上、下两侧顶杆，机械顶出</th>
<th>中心液压顶出，顶出距100 mm，两侧顶杆机械顶出</th>
<th>中心液压顶出，顶出距125 mm，两侧顶杆机械顶出</th>
<th>中心液压顶出，两侧机械顶出</th>
</tr>
</thead>
<tbody>
<tr>
<td>动、定模固定板尺寸/mm × mm</td>
<td>250 × 280</td>
<td>250 × 280</td>
<td>330 × 440</td>
<td>428 × 458</td>
<td>532 × 634</td>
<td>620 × 520</td>
<td>700 × 850</td>
<td>900 × 1000</td>
<td>1180 × 1180</td>
</tr>
<tr>
<td>拉杆空间/mm × mm</td>
<td>235</td>
<td>235</td>
<td>190 × 300</td>
<td>260 × 290</td>
<td>290 × 368</td>
<td>400 × 300</td>
<td>540 × 440</td>
<td>650 × 550</td>
<td>760 × 700</td>
</tr>
<tr>
<td>合模方式</td>
<td>液压－机械</td>
<td>液压－机械</td>
<td>液压－机械</td>
<td>液压－机械</td>
<td>液压－机械</td>
<td>液压－机械</td>
<td>液压－机械</td>
<td>液压－机械</td>
<td>液压－机械</td>
</tr>
<tr>
<td>液压泵流量/(L/min)</td>
<td>50</td>
<td>50</td>
<td>70.12</td>
<td>100.12</td>
<td>170.12</td>
<td>103.9, 12.1</td>
<td>200.25</td>
<td>200, 18, 1.8</td>
<td>175.8, 2.14, 2</td>
</tr>
<tr>
<td>压力/MPa</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>7.0</td>
<td>6.5</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>机器外形尺寸/mm × mm × mm</td>
<td>2340 × 800, 1460</td>
<td>2340 × 850, 1460</td>
<td>3160 × 850, 1550</td>
<td>3340 × 750, 1550</td>
<td>4700 × 1400, 1800</td>
<td>5300 × 940, 1815</td>
<td>6500 × 1300, 2000</td>
<td>7670 × 1740, 2380</td>
<td>10 908 × 1900, 3430</td>
</tr>
</tbody>
</table>
注射机的选用

注射机的选用包括两方面的内容：一是确定注射机的型号，使塑料、塑件、注射模及注射工艺等所要求的注射机的规格参数在所选注射机的规格参数可调的范围内；二是调整注射机的技术参数至所需要的参数。

(1) 注射机类型的选择

根据塑料的品种、塑件的结构、成形方法、生产批量、现有设备及注射工艺等进行选择。

(2) 注射机规格的初选

根据以往的经验和注射模的大小，先预选注射机的型号，之后要进行以下的校核。

(3) 注射机参数的校核

a) 最大注射量的校核

塑件连同凝料在内的质量一般不应大于注射机公称注射量的80%。注射机多以公称容量来表示，可采用下式校核

\[G_{\text{max}} = \alpha \rho G \]

式中

- \(G_{\text{max}} \) ——可注射的最大注射量；
- \(\rho \) ——料筒温度下塑料的体积膨胀率的校正系数，对于结晶形塑料，\(\rho = 0.93 \)；对于非结晶形塑料，\(\rho = 0.96 \)；
- \(\rho \) ——所用塑料在常温下的密度；
- \(G \) ——注射机的公称注射容量。

b) 注射压力的校核

注射机的公称注射压力要大于成形的压力，即

\[P_{\text{公}} > P_{\text{注}} \]

式中

- \(P_{\text{公}} \) ——注射机的最大注射压力；
- \(P_{\text{注}} \) ——塑件成形所需的实际注射压力。

c) 锁模力的校核

由于高压塑料熔体充满型腔时，会产生一个沿注射机轴向的很大的推力，这个力应小于注射机的公称锁模力，否则将产生溢料现象，即

\[F_{\text{锁}} > pA_{\text{分}} \]

式中

- \(F_{\text{锁}} \) ——注射机公称锁模力；
- \(p \) ——注射时型腔的压力，它与塑料品种和塑件有关，表2-9和2-10分别为型腔压力的推荐值。
- \(A_{\text{分}} \) ——塑件和浇注系统在分型面上的垂直投影面积之和。

<table>
<thead>
<tr>
<th>塑料品种</th>
<th>高压聚乙烯 (PE)</th>
<th>低压聚乙烯 (PE)</th>
<th>PS</th>
<th>AS</th>
<th>ABS</th>
<th>POM</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>范围</td>
<td>10 ~ 15</td>
<td>20</td>
<td>15 ~ 20</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>
2.2 塑件形状和精度不同时可选用的型腔压力

<table>
<thead>
<tr>
<th></th>
<th>型腔平均压力</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>ABS</td>
<td>32</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

易于成形的制品
- 聚乙烯、聚苯乙烯等厚壁均匀日用品、容器类

普通制品
- 薄壁容器类

高黏度、高精度制品
- 聚甲醛等机械零件、高精度制品

黏度和精度特别高制品
- 高精度的机械零件

安装部分的尺寸校核
- 应校核的尺寸包括喷嘴、定位圈、最大模厚、最小模厚及模板上的螺孔。

喷嘴尺寸
- 注射机的喷嘴头部的球面半径应与模具主流道始端的球面半径吻合，以免高压熔体从狭缝处溢出。一般应比大 0.001，否则主流道内的塑料凝料无法脱出（图 2.6-1）。

定位圈尺寸
- 为了使模具的主流道的中心线与注射机喷嘴的中心线相重合，模具定模板上的定位圈或主流道衬套与定位圈的整体式结构（图 2.6-2）的外尺寸应与注射机固定模板上的定位孔呈较松动的间隙配合。

最大、最小模厚
- 在模具设计时应使模具的总厚度位于注射机可安装模具的最大模厚和最小模厚之间。同时应校核模具的外形尺寸，使得模具能从注射机拉杆之间装入。

螺孔尺寸
- 注射模具的动模板、定模板应分别与注射机动模板、定模板上的螺孔相适应。模具在注射机上的安装方法有螺栓固定和压板固定，如图 2.6-3 所示。

开模行程和顶出机构的校核
- 注射机的开模行程是有限制的，塑件从模具中取出时所需的开模距离必须小于注射机的最大开模距离，否则塑件无法从模具中取出。开模距离一般可分为两种情况：一是当注射机采用...

图 2.6-1
- 主流道始端与注射机喷嘴的不正确配合
- 喷嘴；
- 主流道衬套；
- 定模板

图 2.6-2
- (a) 用螺钉固定
- (b) 用压板固定

图 2.6-3
- 1 — 2 — 3 — 4
- 2.6 — 2.7 — 2.8
液压机械联合作用的锁模机构时，最大开模行程由连杆机构的最大行程决定，不受模具厚度的影响，即注射机最大开模行程与模具厚度无关；二是当注射机采用液压机械联合作用的锁模机构时，最大开模行程由连杆机构的最大行程决定，并受模具厚度的影响，注射机最大开模行程与模具厚度有关。

<table>
<thead>
<tr>
<th>模具类型</th>
<th>图例</th>
<th>开模行程和顶出机构的校核</th>
</tr>
</thead>
<tbody>
<tr>
<td>单分型面注射模</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—动模;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—定模</td>
<td></td>
<td></td>
</tr>
<tr>
<td>注射机最大开模行程与模具厚度无关!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>式中</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——注射机的最大开模行程;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——塑件脱模距离（型芯的高度）;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—包括流道凝料在内的塑件的高度</td>
<td></td>
<td></td>
</tr>
<tr>
<td>双分型面注射模</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—定模;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—中间板;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—动模</td>
<td></td>
<td></td>
</tr>
<tr>
<td>注射机最大开模行程与模具厚度无关!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>式中</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——模具的厚度</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——中间板与定模板之间的分开距离（流道凝料的长度）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>注射机最大开模行程与模具厚度有关!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>式中</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——中间板与定模板之间的分开距离（流道凝料的长度）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——中间板与定模板之间的分开距离（流道凝料的长度）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——中间板与定模板之间的分开距离（流道凝料的长度）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

如果注射机最大开模行程与模具厚度有关时，注射机的最大开模行程应在上两式右端加上

\[S \geq H_1 + H_2 + \frac{H_1}{H_2} \times 5 - 10 \times 10 \text{ mm} \]

\[S \geq H_1 + H_2 + a \times 5 - 10 \times 10 \text{ mm} \]

\[S \geq H_1 + H_2 + a \times 5 - 10 \times 10 \text{ mm} \]

\[H_1 > H_1 + H_2 \text{ mm} \]

\[S \geq H_1 + H_2 \times 5 - 10 \text{ mm} \]

\[H_1 < H_1 + H_2 \text{ mm} \]

\[S \geq H_1 + H_2 \times 5 - 10 \text{ mm} \]
2.2.2 塑料成形设备

1. 压力机

塑料的压缩成形和压注成形所用的设备是压力机。

压力机的分类

压力机按其传动方式分为机械式压机和液压机。机械式压机的压力不准确，运动噪声大，容易磨损，只适用于一些小型设备；液压机能提供大的压力，获得大行程，工作压力可调，设备结构简单，操作方便，工作平稳，使用十分广泛。

液压机的规格和参数

表2-12列出了常用液压机的技术参数。图2-8和2.9所示为两种液压机，图中所标尺寸为与模具安装有关的尺寸。

表2-12 常用液压机的技术参数

<table>
<thead>
<tr>
<th>常用液压机型号</th>
<th>特征</th>
<th>液压部分</th>
<th>活动横梁部分</th>
<th>顶出部分</th>
<th>公称压力 /kN</th>
<th>回程压力 /kN</th>
<th>工作液最大压力 /MPa</th>
<th>动梁到工作台最大距离 /mm</th>
<th>动梁最大行程 /mm</th>
<th>顶出杆最大顶出力 /kN</th>
<th>顶出杆最大回程力 /kN</th>
<th>顶出杆最大行程 /mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>441</td>
<td>67</td>
<td>31.4</td>
<td>650</td>
<td>250</td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>YA71-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>441</td>
<td>59</td>
<td>31.4</td>
<td>750</td>
<td>250</td>
<td>118</td>
<td>34</td>
<td>175</td>
</tr>
<tr>
<td>Y32-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>490</td>
<td>103</td>
<td>19.6</td>
<td>600</td>
<td>400</td>
<td>74</td>
<td>37</td>
<td>150</td>
</tr>
<tr>
<td>YB32-63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>617</td>
<td>130</td>
<td>24.5</td>
<td>600</td>
<td>400</td>
<td>93</td>
<td>46</td>
<td>150</td>
</tr>
<tr>
<td>LY32-63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>617</td>
<td>186</td>
<td>24.5</td>
<td>600</td>
<td>400</td>
<td>176</td>
<td>98</td>
<td>13</td>
</tr>
<tr>
<td>YX-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>980</td>
<td>490</td>
<td>31.4</td>
<td>650</td>
<td>380</td>
<td>196</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>Y71-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>980</td>
<td>196</td>
<td>31.4</td>
<td>650</td>
<td>380</td>
<td>196</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>Y32-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>980</td>
<td>225</td>
<td>19.6</td>
<td>900</td>
<td>600</td>
<td>147</td>
<td>78</td>
<td>180</td>
</tr>
<tr>
<td>Y32-200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1960</td>
<td>608</td>
<td>19.6</td>
<td>1100</td>
<td>700</td>
<td>294</td>
<td>80</td>
<td>250</td>
</tr>
<tr>
<td>YB32-200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1960</td>
<td>608</td>
<td>19.6</td>
<td>1100</td>
<td>700</td>
<td>294</td>
<td>147</td>
<td>250</td>
</tr>
<tr>
<td>常用液压机型号</td>
<td>常用液压机型号</td>
<td>常用液压机型号</td>
<td>常用液压机型号</td>
<td>常用液压机型号</td>
<td>常用液压机型号</td>
<td>常用液压机型号</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>公称压力</td>
<td>2450</td>
<td>2450</td>
<td>2950</td>
<td>2950</td>
<td>3200</td>
<td>3200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/kN</td>
<td>1225</td>
<td>1225</td>
<td>392</td>
<td>19.6</td>
<td>800</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/MPa</td>
<td>29.4</td>
<td>29.4</td>
<td>1240</td>
<td>1240</td>
<td>294</td>
<td>294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>工作液最</td>
<td>1200</td>
<td>1200</td>
<td>800</td>
<td>800</td>
<td>294</td>
<td>294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/mm</td>
<td>600</td>
<td>600</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>回程</td>
<td>333</td>
<td>333</td>
<td>294</td>
<td>294</td>
<td>300</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/kN</td>
<td>300</td>
<td>300</td>
<td>80.4</td>
<td>80.4</td>
<td>300</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>动梁到工作台最大距离</td>
<td>300</td>
<td>300</td>
<td>250</td>
<td>250</td>
<td>300</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/mm</td>
<td>600</td>
<td>600</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：上压式、柱式结构、下顶出

工作台上有一个顶出杆，动梁上有两孔

图2.3 型塑料制品液压机
型四柱万能液压机

压力机与模具的关系

成形总压力的校核

成形总压力是指塑料压缩或压注时所需要的压力，与塑件的几何形状、水平投影面积、成形工艺等有关，成形总压力应满足下式

$$F_m \leq K F_p$$

式中 F_m ——用模具成形时所需的总压力；F_p ——压机的公称压力；K ——修正系数，一般取0.75 ~ 0.90，视压机的新旧程度而定。

压缩压注成形时所需的总压力

$F_m = \frac{M}{H} \cdot (1 - \frac{A}{H})$
\[
F_M = 10^6 n A p
\]

式中
\(n\)——型腔的数目；
\(A\)——每一型腔的水平投影面积；
\(p\)——塑料成形时所需要的单位压力，见表

<table>
<thead>
<tr>
<th>图 2 - 13</th>
<th>典型塑件压缩成形时的单位压力</th>
<th>MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 ~ 40 mm, 2 ~ 4 mm</td>
<td>12.5 ~ 17.5</td>
</tr>
<tr>
<td></td>
<td>20 ~ 40 mm, 2 ~ 4 mm</td>
<td>12.5 ~ 17.5</td>
</tr>
<tr>
<td></td>
<td>20 ~ 40 mm, 2 ~ 4 mm</td>
<td>15 ~ 20</td>
</tr>
<tr>
<td></td>
<td>40 ~ 50 mm, 4 ~ 6 mm</td>
<td>17.5 ~ 22.5</td>
</tr>
<tr>
<td></td>
<td>60 ~ 100 mm, 4 ~ 6 mm</td>
<td>22.5 ~ 27.5</td>
</tr>
<tr>
<td></td>
<td>60 ~ 100 mm, 2 ~ 4 mm</td>
<td>27.5 ~ 35</td>
</tr>
<tr>
<td></td>
<td>40 mm, 2 ~ 4 mm</td>
<td>25 ~ 30</td>
</tr>
<tr>
<td></td>
<td>40 mm, 2 ~ 4 mm</td>
<td>25 ~ 30</td>
</tr>
<tr>
<td></td>
<td>40 mm, 4 ~ 6 mm</td>
<td>30 ~ 35</td>
</tr>
</tbody>
</table>
如果压机选定以后，也可以用上式来确定型腔的数目，如下式

\[n \leq \frac{K F_p}{10^5 A p} \]

式中

- \(F_k \) —— 开模力；
- \(F_p \) —— 压机的顶出力；
- \(F_m \) —— 塑件从模具中脱出所需要的力，即脱模力，可按下式计算

\[F_m = 10^6 A_c p_j \]

式中

- \(A_c \) —— 塑件侧面积之和；
- \(p_j \) —— 塑件与模具的结合力，见表。

表 塑件与模具的结合力

<table>
<thead>
<tr>
<th>材料性质</th>
<th>结合力</th>
</tr>
</thead>
<tbody>
<tr>
<td>含木纤维和矿物填料的塑料</td>
<td>($)</td>
</tr>
<tr>
<td>玻璃纤维塑料</td>
<td>($)</td>
</tr>
</tbody>
</table>

2.2 塑件简图特征

<table>
<thead>
<tr>
<th>粉状酚醛塑料</th>
<th>不预热预热布层塑料</th>
<th>氨基塑料</th>
</tr>
</thead>
<tbody>
<tr>
<td>滑轮型塑件</td>
<td>线轴型塑件</td>
<td></td>
</tr>
</tbody>
</table>
模具合模高度和开模行程的校核

模具的合模高度应在压机上下模板的最大和最小开距之间，以保证模图等的正常使用。

式中：
- \(h_{\text{max}} \) ——压机上下模板的最大开距；
- \(h_{\text{min}} \) ——压机上下模板的最小开距；
- \(h \) ——模具合模高度

应满足：

\[h_{\text{min}} \leq h_1 + h_2 \leq h_{\text{max}} \]

式中：
- \(h_1 \) ——凹模的高度；
- \(h_2 \) ——凸模台肩的高度。

开模行程的校核

模具的开模行程应当满足：

\[h < h_{\text{min}} \]

式中：
- \(h_{\text{min}} \) ——模具最小开模距；
- \(h_1 \) ——塑件高度；
- \(h_2 \) ——凸模高度。

压机工作台面有关尺寸的校核

模具设计时应根据压机的工作台面规格及结构来确定模具相应的尺寸。模具的宽度应小于压机立柱或框架之间的距离，使模具能顺利地安装；模具的最大外形应小于压机的台面，以便模具能被安装固定。

模具推出机构与压机的关系

对于压缩模具和压注模具，除小型简易模具不设推出装置以外，都应设置推出机构。图2-10为常见的三种压力推出机构，即图2-10所示的推出机构。

- 1 — 齿条；
- 2 — 齿轮；
- 3 — 手柄；
- 4 — 拉杆；
手动顶出机构

见图，通过转动带有齿轮的手柄，使带有齿条的压机顶杆做向上运动，带动模具的顶出尾轴，推动模具的推出装置顶出塑件。

顶出托架

见图，在压机的上下工作台两边有对称的两根拉杆，当上工作台升到一定高度时，与拉杆调节螺母相接触，通过两侧的拉杆拖动位于工作台下方的托架，托架托起压机顶杆。

液压顶出机构

见图，在下工作台正中设有顶出液压缸，缸内有差动活塞，可带动压机顶杆。

模具的推出机构必须与压机的顶出机构相适应，即模具所需的推出行程（图中的）应小于压机的最大顶出行程；模具的尾轴应与压机顶杆的螺纹相一致。

挤出机

塑料的挤出成形所用的设备为挤出机。

挤出成形工艺

挤出成形是制造连续的塑料板材、棒材的方法，挤出成形是将固态塑料在一定的温度、压力条件下，熔融、塑化，利用挤出机的螺杆（或柱塞）加压，使其通过特定形状的口模而成为截面与口模形状相仿的连续型材。

挤出成形适于所有的热塑性塑料和部分热固性塑料。

挤出机的分类

挤出机的工作原理是：螺杆在料筒内转动，料被不断地推动压实，料在强力剪切、摩擦，加之外加热器的作用下，逐渐熔化并均匀后，以一定压力和流量从机头中挤出。

挤出机的外形和原理与注射机十分相似，所不同的是挤出机是连续供料，因此螺杆的运动是连续的。挤出机一般分为单螺杆挤出机和双螺杆挤出机两种，见表。

<table>
<thead>
<tr>
<th>类型</th>
<th>特点</th>
<th>适用范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>单螺杆挤出机</td>
<td>结构简单</td>
<td>软质聚氯乙烯、聚苯乙烯、+,-等型材</td>
</tr>
<tr>
<td>双螺杆挤出机</td>
<td>对材料的推进、分散、混合效果好</td>
<td>高精度、高硬度（如硬聚氯乙烯）的大型塑件，如塑料门窗等</td>
</tr>
</tbody>
</table>

按螺杆在空间的位置可分为卧式挤出机和立式挤出机。卧式挤出机的螺杆是水平放置的，可方便完成各种制品的生产，应用广泛。立式挤出机的螺杆是垂直放置的，由于立式挤出机辅机配制较困难，而且机器高度尺寸较大，一般只有小型机才采用，见图。

挤出机的规格及主要参数

挤出机的参数主要有螺杆直径、螺杆转数、螺杆的长径比（指螺杆的有效长度与直径之间的比值）、电动机功率等。表为部分国产挤出机的主要参数。
图2.12 立式挤出机

1—料斗； 2—螺杆； 3—机筒； 4—机头； 5—传动装置； 6—机座

表2-16 国产挤出机主要参数

<table>
<thead>
<tr>
<th>型号</th>
<th>螺杆直径/mm</th>
<th>螺杆转数/r/min</th>
<th>长径比</th>
<th>电动机功率/kW</th>
<th>中心高/mm</th>
<th>产量/kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ-30</td>
<td>30</td>
<td>20~120</td>
<td>15/20/25</td>
<td>3/1</td>
<td>1000</td>
<td>2~6</td>
</tr>
<tr>
<td>SJ-45</td>
<td>45</td>
<td>17~102</td>
<td>15/20/2</td>
<td>5/1.67</td>
<td>1000</td>
<td>7~18</td>
</tr>
<tr>
<td>SJ-65</td>
<td>65</td>
<td>15~90</td>
<td>15/20/2</td>
<td>15/5</td>
<td>1000</td>
<td>15~33</td>
</tr>
<tr>
<td>SJ-90</td>
<td>90</td>
<td>12~72</td>
<td>15/20/2</td>
<td>22/7.3</td>
<td>1000</td>
<td>35~70</td>
</tr>
<tr>
<td>SJ-120</td>
<td>120</td>
<td>8~48</td>
<td>15/20/2</td>
<td>55/18.3</td>
<td>1100</td>
<td>56~112</td>
</tr>
<tr>
<td>SJ-150</td>
<td>150</td>
<td>7~42</td>
<td>15/20/2</td>
<td>75/25</td>
<td>1100</td>
<td>95~190</td>
</tr>
<tr>
<td>SJ-200</td>
<td>200</td>
<td>7~30</td>
<td>15/20/2</td>
<td>100/333</td>
<td>1100</td>
<td>160~320</td>
</tr>
</tbody>
</table>
注射模具有哪几种分类方法,每种方法是如何进行分类的?

注射模具一般由哪几部分组成,各部分的作用是什么?

注射机有哪几种分类方法,每种方法是如何进行分类的?

试分析卧式螺杆注射机的工作过程。

试说明型号注射机各参数所代表的含义?

选用注射机时,要进行哪些校核?

习题

1.
2.
3.
4.
5. XS – ZY – 125
6.
7.
8.
9.
10.
3. 1

3. 1. 1

1.

2.
成形零部件
模具中用于成形塑料制件的空腔部分称为模腔。构成塑料模具模腔的零件统称为成形零部件。由于模腔是直接成形塑料制件的部分，因此模腔的形状应与塑件的形状一致，模腔一般由型腔零件、型芯组成。图所示的模具型腔是由型腔（定模板）、型芯、动模板和推杆组成的。

浇注系统
将塑料由注射机喷嘴引向型腔的流道称为浇注系统，浇注系统分主流道、分流道、浇口、冷料穴四个部分。图所示的模具浇注系统是由浇口套、拉料杆和定模板上的流道组成。

导向机构
为确保动模与定模合模时准确对中而设导向零件。通常有导向柱、导向孔或在动模板、定模上分别设置互相吻合的内外锥面。图所示的模具导向系统由导柱和导套组成。

推出装置
推出装置是在开模过程中，将塑件从模具中推出的装置。有的注射模具的推出装置为避免在顶出过程中推出板歪斜，还设有导向零件，使推板保持水平运动。图所示的模具推出装置由推杆、推板、推杆固定板、复位杆、主流道拉料杆、支承钉、推板导柱及推板导套组成。

温度调节和排气系统
为了满足注射工艺对模具温度的要求，模具设有冷却或加热系统。冷却系统一般为在模具内开设的冷却水道，加热系统则为模具内部或周围安装的加热元件，如电加热元件。图所示的模具冷却系统由冷却水道和水嘴组成。

在注射成形过程中，为了将型腔内的气体排除模外，常常需要开设排气系统。

结构零部件
用来安装固定或支承成形零部件及前述的各部分机构的零部件。支承零部件组装在一起，可以构成注射模具的基本骨架。图所示的模具结构零部件由定模座板、动模座板、垫块和支承板组成。

单分型面注射模的工作过程
单分型面注射模的一般工作过程为：模具闭合—模具锁紧—注射—保压—补塑—冷却—开模—推出塑件。下面以图为例来讲解单分型面注射模的工作过程。

在导柱和导套的导向定位下，动模和定模闭合。型腔零件由定模板与动模板和型芯组成，并由注射机合模系统提供的锁模力锁紧；然后注射机开始注射，塑料熔体经定模上的浇注系统进入型腔；待熔体充满型腔并经过保压、补塑和冷却定型后开模，开模时，注射机合模系统带动动模后退，模具从动模和定模分型面分开，塑件包在型芯上随动模一起后退，同时，拉料杆将浇注系统的主流道凝料从浇口套中拉出。当动模移动一定距离后，注射机的顶杆接触推板，推出机构开始动作，使推杆和拉料杆分别将塑件及浇注系统凝料从型芯和冷料穴中推出，塑件与浇注系统凝料一起从模具中落下，至此完成一次注射过程。合模时，推出机构靠复位杆复位，并准备下一次注射。
3.1.2

3.1.2.1

3.1.2.2
注射模具结构设计步骤

<table>
<thead>
<tr>
<th>步骤</th>
<th>设计内容说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>确定型腔的数目</td>
</tr>
<tr>
<td>2</td>
<td>选择分型面</td>
</tr>
<tr>
<td>3</td>
<td>确定型腔的布置方案</td>
</tr>
<tr>
<td>4</td>
<td>确定浇注系统</td>
</tr>
<tr>
<td>5</td>
<td>确定脱模方式</td>
</tr>
<tr>
<td>6</td>
<td>确定调温系统结构</td>
</tr>
<tr>
<td>7</td>
<td>确定凹模和型芯的固定方式</td>
</tr>
<tr>
<td>8</td>
<td>确定排气形式</td>
</tr>
<tr>
<td>9</td>
<td>决定注射模的主要尺寸</td>
</tr>
<tr>
<td>10</td>
<td>选用标准模架</td>
</tr>
<tr>
<td>11</td>
<td>绘制模具的结构草图</td>
</tr>
<tr>
<td>12</td>
<td>校核模具与注射机有关尺寸</td>
</tr>
</tbody>
</table>
3.1.2.4 注射模结构设计的审查

对根据上述有关注射模结构设计的各项要求设计出来的注射模，应进行初步审查并征得用户的同意，同时，也有必要对用户提出的要求加以确认和修改。

绘制模具的装配图

装配图是模具装配的主要依据，因此应清楚地表明注射模的各个零件的装配关系、必要的尺寸（如外形尺寸、定位圈直径、安装尺寸、活动零件的极限尺寸等）、序号、明细表、标题栏及技术要求（技术要求的内容为以下几项：

1. 对模具结构的性能要求，如对推出机构、抽芯结构的装配要求；
2. 对模具装配工艺的要求，如分型面的贴合间隙、模具上下面的平行度；
3. 模具的使用要求；
4. 防氧化处理、模具编号、刻字、油封及保管等要求；
5. 有关试模及检验方面的要求）。

如果凹模或型芯的镶块太多，可以绘制动模或定模的部件图，并在部件图的基础上绘制装配图。

绘制模具零件图

由模具装配图或部件图拆绘零件图的顺序为：先内后外，先复杂后简单，先成形零件后结构零件。

复核设计图样

注射模设计的最后审核是注射模设计的最后把关，应多关注零件的加工性能。注射模的最后审核要点见表

<table>
<thead>
<tr>
<th>审核方面</th>
<th>审核要点</th>
</tr>
</thead>
<tbody>
<tr>
<td>基本结构方面</td>
<td>注射模的机构和基本参数是否与注射机匹配</td>
</tr>
<tr>
<td></td>
<td>注射模是否具有合模导向机构，机构设计是否合理</td>
</tr>
<tr>
<td></td>
<td>分型面选择是否合理，有无产生飞边的可能，塑件是否滞留在设有顶出脱模机构的动模（或定模）一侧</td>
</tr>
<tr>
<td></td>
<td>型腔的布置与浇注系统的设计是否合理，浇口是否与塑料原料相适应，浇口位置是否恰当，浇口与流道几何形状及尺寸是否合适，流动比数值是否合理</td>
</tr>
<tr>
<td></td>
<td>成形零部件设计是否合理</td>
</tr>
<tr>
<td></td>
<td>顶出脱模机构与侧向分型或抽芯机构是否合理、安全和可靠，它们之间或它们与其他模具零部件之间有无干涉或碰撞的可能</td>
</tr>
<tr>
<td></td>
<td>是否有排气机构，如果需要，其形式是否合理</td>
</tr>
<tr>
<td></td>
<td>是否需要温度调节系统，如果需要，其热源和冷却方式是否合理，温控元件是否足，精度等级如何，寿命长短如何，加热和冷却介质的循环回路是否合理</td>
</tr>
<tr>
<td></td>
<td>支承零部件结构是否合理</td>
</tr>
<tr>
<td></td>
<td>外形尺寸能否保证安装，固定方式选择得是否合理可靠，安装用的螺栓孔是否与注射机动、定模固定板上的螺孔位置一致</td>
</tr>
</tbody>
</table>

表3-2 注射模具的审核

<table>
<thead>
<tr>
<th>审核方面</th>
<th>审核要点</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
3.2

3.2.1

1. 图中展示了一个单型腔和多型腔成形的塑件。图（a）是单型腔成形的塑件，图（b）是多型腔成形的塑件。
单型腔、多型腔的优缺点及适用范围

<table>
<thead>
<tr>
<th>类型</th>
<th>优点</th>
<th>缺点</th>
<th>适用范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>单型腔模具</td>
<td>塑件的精度高;工艺参数易于控制;模具结构简单;模具制造成本低,周期短</td>
<td>塑件生产率低,塑件成本高</td>
<td>塑件较大,精度要求较高或者小批量及试生产</td>
</tr>
<tr>
<td>多型腔模具</td>
<td>塑件生产率高,塑件成本低</td>
<td>塑件的精度低;工艺参数难以控制;模具结构复杂;模具制造成本高,周期长</td>
<td>大批量、长期生产的小型塑件</td>
</tr>
</tbody>
</table>

型腔数目的确定方法

型腔数目的确定因素有四点，见表。

<table>
<thead>
<tr>
<th>序号</th>
<th>依据</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1. 根据经济性</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n = \sqrt{\frac{NY_t}{60C_i}}$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2. 根据锁模力</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n = \frac{Q}{p - A_2} \frac{A_1}{A}$</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3. 根据塑件精度</td>
</tr>
<tr>
<td></td>
<td></td>
<td>通常最多采用一模四腔</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4. 根据注射量</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n = \frac{0.8G - m_2}{m_1}$</td>
</tr>
</tbody>
</table>

式中：
- n ——每副模具中的型腔数目，个
- N ——计划生产塑件的总量，个
- Y_t ——单位小时模具加工的费用，元
- p ——成形周期，小时
- A_1 ——每一个型腔的模具加工费用，元
- Q ——注射机锁模力，千牛
- p ——型腔内熔体的平均压力，兆帕
- A_2 ——浇注系统在分型面上的投影面积，毫米
- A ——每一个塑件在分型面上的投影面积，毫米
- G ——单个塑件的质量，克
- m_1 ——浇注系统的质量，克
- m_2 ——注射机的最大注射量，克
- C_i ——根据经验，每增加一个型腔，塑件的尺寸精度降低0.2%
在多型腔模具的实际设计中,一种方法是首先确定注射机的型号,再根据注射机的技术参数和塑件的技术经济要求,计算出型腔的数目;另一种方法是先根据生产效率的要求和制件的精度要求确定型腔的数目,然后再选择注射机或对现有的注射机进行校核。

型腔的分布

单型腔模具塑件在模具中的位置

单型腔模具有塑件在动模部分、定模部分及同时在动模和定模中的结构。塑件在单型腔模具中的位置如图1所示。图2为塑件全部在定模中的结构;图3为塑件在动模中的结构;图4、5为塑件同时在定模和动模中的结构。

图1 塑件在单型腔模具中的位置
1—动模板;2—定模板;3—动模型芯

多型腔模具型腔的分布

对于多型腔模具,由于型腔的排布与浇注系统密切相关,所以在模具设计时应综合考虑。型腔的排布应使每个型腔都能通过浇注系统从总压力中均等地分得所需的足够压力,以保证塑料熔体能同时均匀充满每一个型腔,从而使各个型腔的塑件内在质量均一稳定。多型腔排布方法:图2平衡式和非平衡式多型腔排布

平衡式排布

平衡式多型腔排布如图3所示。其特点是从主流道到各型腔浇口的分流道的长度、

非平衡式排布

(d) (e) (f)
截面形状、尺寸及分布对称性对应相同，可实现各型腔均匀进料和达到同时充满型腔的目的。非平衡式多型腔排布如图所示。其特点是从主流道到各型腔浇口的分流道的长度不相同，因而不利于均衡进料，但这种方式可以明显缩短分流道的长度，节约塑件的原材料。为了达到同时充满型腔的目的，往往各浇口的截面尺寸要制造得不相同，有关非平衡式排布的型腔，浇口的截面尺寸设计将在小节中介绍。

分型面的概念和设计

分型面的概念

分型面是模具动模和定模的结合处，在塑件最大外形处，是为了塑件和凝料取出而设计的，如图所示。

分型面的形式

注射模有的只有一个分型面，有的有多个分型面，而且分型面有平面、曲面和斜面，如图所示。图为平直分型面，图为倾斜分型面，图为阶梯分型面，图为曲面分型面。

分型面的设计原则

影响选取分型面的因素很多。在选取分型面时，应遵循以下的原则，见表。

<table>
<thead>
<tr>
<th>序号</th>
<th>原则</th>
<th>简图</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>分型面应选择在塑件外形的最大轮廓处</td>
<td>(a)</td>
<td>图正确，分型面取在塑件外形的最大轮廓处，才能使塑件顺利脱模。</td>
</tr>
<tr>
<td>2</td>
<td>分型面的选取应有利于塑件的留模方式，便于塑件顺利脱模</td>
<td>(a) (b)</td>
<td>图合理，分型后，塑件会包紧型芯而留在动模一侧。</td>
</tr>
</tbody>
</table>

分型面的选取应有利于塑件的留模方式，便于塑件顺利脱模。
分型面的选取应有利于塑件的留模方式，便于塑件顺利脱模。
图（a）合理，分型塑件留在动模一侧，并由推板推出。
图（b）合理，能保证双联塑料齿轮的同轴度的要求。
图（a）合理，能满足塑件外观的要求。
图（b）合理，所产生的飞边不会影响塑件的外观，而且易清除。
图（a）合理，由于有的锥面配合，不易产生飞边。
图（b）合理，图（b）的推管生产较困难，使用稳定性较差。

塑件在单分型面模具中的位置

图（a）

图（b）
3.3

3.3.1

1.

2.

3. 6a

3. 6b
图 3.6

1—型腔; 2—型芯; 3—浇口; 4—分流道; 5—拉料杆; 6—冷料穴; 7—主流道; 8—浇口套

尽量避免或减少产生熔接痕
熔体流动时应尽量减少分流的次数,有分流必然有汇合,熔体汇合之处必然会产生熔接痕,尤其在流程长、温度低时,这对塑件强度的影响较大。

有利于型腔中气体的排出
浇注系统应能顺利地引导塑料熔体充满型腔的各个部分,使浇注系统及型腔中原有的气体能有序地排出,避免充填过程中产生紊流或涡流,也避免因气体积存而引起凹陷、气泡、烧焦等塑件的成形缺陷。

防止型芯的变形和嵌件的位移
浇注系统设计时应尽量避免塑料熔体直接冲击细小型芯和嵌件,以防止熔体的冲击力使细小型芯变形或嵌件位移。

尽量采用较短的流程充满型腔
这样可有效减少各种质量缺陷。

流动距离比的校核
对于大型或薄壁塑料制件,塑料熔体有可能因其流动距离过长或流动阻力太大而无法充满整个型腔。

流动比的校核
流动距离比简称流动比,它是指塑料熔体在模具中进行最长距离的流动时,其截面厚度相同的各段料流通道及各段模腔的长度与其对应截面厚度之比值的总和,即

$$
\phi = \sum_{i=1}^{n} \frac{L_i}{t_i}
$$

式中
ϕ——流动距离比;
L_i——模具中各段料流通道及各段模腔的长度, mm;
t_i——模具中各段料流通道及各段模腔的截面厚度, mm;
ϕ——塑料的许用流动距离比, 见表 3-4。
3-6 塑料注射压力与流动距离比

<table>
<thead>
<tr>
<th>塑料品种</th>
<th>注射压力/MPa</th>
<th>流动距离比</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚乙烯(PE)</td>
<td>49</td>
<td>140~100</td>
</tr>
<tr>
<td></td>
<td>68.6</td>
<td>240~200</td>
</tr>
<tr>
<td></td>
<td>147</td>
<td>280~250</td>
</tr>
<tr>
<td>聚丙烯(PP)</td>
<td>49</td>
<td>140~100</td>
</tr>
<tr>
<td></td>
<td>68.6</td>
<td>240~200</td>
</tr>
<tr>
<td></td>
<td>117.6</td>
<td>280~240</td>
</tr>
<tr>
<td>聚碳酸酯(PC)</td>
<td>88.2</td>
<td>130~90</td>
</tr>
<tr>
<td></td>
<td>117.6</td>
<td>150~120</td>
</tr>
<tr>
<td></td>
<td>127.4</td>
<td>160~120</td>
</tr>
<tr>
<td>软聚氯乙烯(SPVC)</td>
<td>88.2</td>
<td>280~200</td>
</tr>
<tr>
<td></td>
<td>68.6</td>
<td>110~70</td>
</tr>
<tr>
<td></td>
<td>117.6</td>
<td>160~120</td>
</tr>
</tbody>
</table>

3.1 3.7

\[
\phi = \frac{L_1}{t_1} + \frac{L_2}{t_2} + \frac{L_3}{t_3} + \frac{2L_4}{t_4} + \frac{L_5}{t_5}
\]

3.7

![图2](a) (b)
主流道和分流道设计

3.3.2

主流道的设计

主流道是指浇注系统中从注射机喷嘴与模具接触处开始到分流道为止的塑料熔体的流动通道。主流道是熔体最先流经模具的部分，它的形状与尺寸对塑料熔体的流动速度和充模时间有较大的影响，因此，必须使熔体的温度降和压力损失最小。

如图所示，在卧式或立式注射机上使用的模具中，主流道垂直于分型面。由于主流道要与高温塑料熔体及注射机喷嘴反复接触，所以只有在小批量生产时，主流道才在注射模上直接加工，大部分注射模中，主流道通常设计成可拆卸、可更换的主流道浇口套。

为了让主流道凝料能从浇口套中顺利拔出，主流道设计成圆锥形，其锥角为α，小端直径比注射机喷嘴直径大。由于小端的前面是球面，其深度为d，注射机喷嘴的球面在该位置与模具接触并且贴合，因此要求主流道球面半径比喷嘴球面半径大。流道的表面粗糙度值为$Ra=0.08 \mu m$。

主流道浇口套一般采用碳素工具钢如T8A、T10A等材料制造，热处理淬火硬度HRC为53~57。

分流道设计

分流道是指主流道末端与浇口之间的一段塑料熔体的流动通道。分流道的作用是改变熔体流向，使其以平稳的流态均衡地分配到各个型腔。设计时应注意尽量减少流动过程中的热量损失。

1. 3.8

H7/m6 0.2 mm

2. 3.8

H7/m6 0.2 mm
分流道的形状与尺寸

分流道开设在动、定模分型面的两侧或任意一侧，其截面形状应尽量使其比表面积（流道表面积与其体积之比）小。常用的分流道截面形式有圆形、梯形、U形、半圆形及矩形等，如图所示。梯形及U形截面分流道加工较容易，且热量损失与压力损失均不大，是常用的分型方式。

图3.9 分流道截面的形状

图3.9 分流道截面的形状

分流道截面的形状

图3.9 分流道截面的形状

图3.9 分流道截面的形状

梯形截面分流道加工较容易，且热量损失与压力损失均不大，是常用的分型方式。根据经验，根据成形条件不同，也可在内选取。

图3.9 分流道的长度

分流道长度的设计参数尺寸，其中

图3.10 分流道的长度

分流道的长度要尽可能短，且弯折少，以便减少压力损失和热量损失，节约塑料的原材料和能耗。图3.10所示为分流道长度的设计参数尺寸，其中

图3.10 分流道的长度
的尺寸根据型腔的多少和型腔的大小而定。分流道的表面粗糙度由于分流道中与模具接触的外层塑料迅速冷却,只有内部的熔体流动状态比较理想,因此分流道表面粗糙度数值不能太小,一般值&%"#值左右,这可增加对外层塑料熔体的流动阻力,使外层塑料冷却皮层固定,形成绝热层。

分流道的布置分流道常用的布置形式有平衡式和非平衡式两种,这与多型腔的平衡式与非平衡式的布置是一致的。

浇口设计浇口的概念浇口亦称进料口,是连接分流道与型腔的熔体通道。浇口的设计与位置的选择恰当与否,直接关系到塑件能否被完好、高质量地注射成形,浇口的结构见图!

浇口的作用浇口可分成限制性浇口和非限制性浇口两类。限制性浇口是整个浇注系统中截面尺寸最小的部位,其作用如下:浇口通过截面积的突然变化,使分流道送来的塑料熔体提高注射压力,使塑料熔体通过浇口的流速有一突变性增加,提高塑料熔体的剪切速率,降低黏度,使其成为理想的流动状态,从而迅速均衡地充满型腔。对于多型腔模具,调节浇口的尺寸,还可以使非平衡布置的型腔达到同时进料的目的。浇口还起着较早固化、防止型腔中熔体倒流的作用。浇口通常是浇注系统最小截面部分,这有利于在塑件的后加工中塑件与浇口凝料的分离。

非限制性浇口是整个浇注系统中截面尺寸最大的部位,它主要是对中大型筒类、壳类塑件型腔起引料和进料后的施压作用。

单分型面注射模浇口的类型单分型面注射模的浇口可以采用直接浇口、中心浇口、侧浇口、环形浇口、轮辐式浇口和爪形浇口。直接浇口又称为主流道型浇口,它属于非限制性浇口。这种形式的浇口只适于单型腔模具,直接浇口的形式见图!%

选用较小的主流道锥角,且尽量减少定模板和定模座板的厚度。直接浇口大多用于注射成形大、中型长流程深型腔筒形或壳形塑件,尤其适合于如聚碳酸酯、聚砜等高黏度塑料。
当筒类或壳类塑件的底部中心或接近于中心部位有通孔时，内浇口就开设在该孔处，同时中心设置分流锥，这种类型的浇口称中心浇口，是直接浇口的一种特殊形式，见图。它具有直接浇口的一系列优点，而克服了直接浇口易产生的缩孔、变形等缺陷。

在设计时，环形的厚度一般不小于0.5 mm。侧浇口一般开设在分型面上，塑料熔体从内侧或外侧充填模具型腔，其截面形状多为矩形（扁槽），是限制性浇口。侧浇口广泛使用在多型腔单分型面注射模上，侧浇口的形式如图所示。

侧浇口的尺寸计算的公式如下：

$$ b = \frac{0.6 \sim 0.9}{30} \sqrt{A} $$

$$ t = 0.6 \sim 0.9 \delta $$
式中

\[b = 1.5 \sim 5.0 \text{ mm} \]

\[A = \frac{1}{3} \sim \frac{2}{3} \]

\[t = 0.5 \sim 2.0 \text{ mm} \]

\[\delta = \text{塑件的外侧表面积} \]

\[\text{侧浇口的厚度} \]

\[\text{浇口处塑件的壁厚} \]

4. 侧浇口的分类

4.1 侧向进料的侧浇口（图 3.13a），对于中小型塑件，一般深度取塑件壁厚的

\[l = 0.7 \sim 2.0 \text{ mm} \]

\[b = 1.5 \sim 5.0 \text{ mm} \]

4.2 端面进料的搭接式侧浇口（图 3.13b），搭接部分的长度

\[l_i = 0.6 \sim 0.9 + \frac{b}{2} \text{ mm} \]

\[l = 2.0 \sim 3.0 \text{ mm} \]

4.3 侧面进料的搭接式浇口（图 3.13c），其浇口长度选择可参考端面进料的搭接式侧浇口。

4.4 侧浇口有两种变异的形式

4.4.1 扇形浇口

扇形浇口是一种沿浇口方向宽度逐渐增加、厚度逐渐减少的呈扇形的侧浇口，如图 3.13a 所示，常用于扁平而较薄的塑件，如盖板和托盘类等。通常在与型腔结合处形成长宽厚薄的进料口，进料口的宽度视塑件大小而定，一般取到浇口处型腔宽度的

\[\frac{1}{3} \sim \frac{2}{3} \]

的进料口，塑料熔体通过它进入型腔。采用扇形浇口，使塑料熔体在宽度方向上的流动得到更均匀的分配，使塑件的内应力减小，减少带入空气的可能性，但浇口痕迹较明显。

4.4.2 平缝浇口

平缝浇口又称薄片浇口，如图 3.13b 所示。这类浇口宽度很大，厚度很小，主要用来成形面积较小、尺寸较大的扁平塑件，可减小平板塑件的翘曲变形，但浇口的去除比扇形浇口更困难，浇口在塑件上痕迹也更明显。平缝浇口的宽度一般取塑件长度的

\[\frac{1}{4} \sim \frac{1}{2} \]

，厚度

\[l = 6 \text{ mm} \]

，长度

\[t = 0.25 \sim 1.0 \text{ mm} \]

。
环形浇口

对型腔填充采用圆环形进料形式的浇口称环形浇口。环形浇口的形式如图所示。

图环形浇口的形式
—流道;
—环形浇口;
—塑件

环形浇口的特点是进料均匀，圆周上各处流速大致相等，熔体流动状态好，型腔中的空气容易排出，熔接痕可基本避免，但浇注系统耗料较多，浇口去除较难。

图所示为内侧进料的环形浇口，浇口设计在型芯上，浇口的厚度，长度；图为端面进料的搭接式环形浇口，搭接长度，总长可取。

轮辐式浇口

轮辐式浇口是在环形浇口基础上改进而成，由原来的圆周进料改为数小段圆弧进料，轮辐式浇口的形式见图。

图轮辐式浇口的形式
—主流道;
—分流道;
—轮辐式浇口;
—塑件

这种形式的浇口耗料比环形浇口少得多，且去除浇口容易。这类浇口在生产中比环形浇口应用广泛，多用于底部有大孔的圆筒形或壳形塑件。轮辐浇口的缺点是增加了熔接痕，这会影响塑件的强度。

轮辐式浇口尺寸可参考侧浇口尺寸取值。
爪形浇口如图所示,爪形浇口加工较困难,通常用电火花成形。型芯可用做分流锥,其头部与主流道有自动定心的作用(型芯头部有一端与主流道下端大小一致),从而避免了塑件弯曲变形或同轴度差等成形缺陷。爪形浇口的缺点与轮辐式浇口类似,主要适用于成形内孔较小且同轴度要求较高的细长管状塑件。

浇口位置的选择原则

尽量缩短流动距离

浇口位置的选择应保证迅速和均匀地充填模具型腔,尽量缩短熔体的流动距离,这对大型塑件更为重要。

避免熔体破裂现象引起塑件的缺陷

小的浇口如果正对着一个宽度和厚度较大的型腔,则熔体经过浇口时,由于受到很高的剪切应力,将产生喷射和蠕动等现象,这些喷出的高度定向的细丝或断裂物会很快冷却变硬,与后进入型腔的熔体不能很好熔合而使塑件出现明显的熔接痕。要克服这种现象,可适当地加大浇口的截面尺寸,或采用冲击型浇口(浇口对着大型芯等),避免熔体破裂现象的产生。

浇口应开设在塑件厚壁处

当塑件的壁厚相差较大时,若将浇口开设在薄壁处,这时塑料熔体进入型腔后,不但流动阻力大,而且还易冷却,影响熔体的流动距离,难以保证充填满整个型腔。从收缩角度考虑,塑件厚壁处往往是熔体最晚固化的地方,如果浇口开设在薄壁处,那厚壁的地方因熔体收缩得不到补缩就会形成表面凹陷或缩孔。为了保证塑料熔体顺利充填型腔,使注射压力得到有效传递,而在熔体液态收缩时又能得到充分补缩,一般浇口的位置应开设在塑件的厚壁处。

考虑分子定向的影响

由于垂直于流向和平行于流向之处的强度和应力开裂倾向是有差别的,往往垂直于流向的方位强度低,容易产生应力开裂,所以在选择浇口位置时,应充分注意这一点。

浇口的位置对定向的影响

图所示塑件,由于其底部圆周带有一金属环嵌件,如果浇口开设在处(直接浇口或点浇口),则此塑件使用不久就会断裂,因为塑料与金属环形嵌件的线收缩系数不同,嵌件周围的塑料层有很大的周向应力。若浇口开设在处(侧浇口),由于聚合物分子沿塑件圆周方向定向,应力开裂的机会就会大为减少。

减少熔接痕,提高熔接强度

由于浇口位置的原因,塑料熔体充填型腔时会造成两股或两股以上的熔体料流的汇合。在汇合之处,料流前端是气体且温度最低,所以在塑件上就会形成熔接痕。熔接痕部位塑件的熔接强度会降低,也会影响塑件外观,在成形玻璃纤维增强塑料制件时这种现象尤其严重。如无特殊需要最好不要开设一个以上的浇口,图所示的浇口会形成两个熔接痕,而图所示的浇口仅形成一个熔接痕。圆环形浇口流动状态好,无熔接痕,而轮辐式浇口有熔接痕,而且轮辐越多,熔接痕越

\[\text{3. 18} \]
3.4

1.

2.
断或计算。浇口平衡时，

值应符合下述要求：相同塑件的多型腔，各浇口计算出的

值必须相等；不同塑件的多型腔，各浇口计算出的

值必须与其塑件型腔的充填量成正比。

相同塑件多型腔的

值可用式（§ & ’）表示

式中

——— 浇口的截面积；

——— 从主流道中心至浇口的流动通道的长度；

——— 浇口的长度。

不同塑件多型腔成形的

值可用式（§ & +，）表示

式中

、

——— 分别为型腔

、

的充填量（熔体质量或体积）；

、

——— 分别为型腔

、

的浇口截面积；

、

——— 分别为从主流道中心到型腔

、

的流动通道的长度；

、

——— 分别为型腔

、

的浇口长度。

在一般多型腔注射模浇注系统设计中，浇口截面通常采用矩形或圆形点浇口，浇口截面积

与分流道截面积

的比值应取

。矩形浇口的截面宽度

为其厚度

的

倍，即

各浇口的长度相等。在上述前提下，

进行浇口的平衡计算。

例

。图

所示为相同塑件

个型腔的模具流道分布图，各浇口为矩形窄浇口，各

段分流道直径相等，分流道

，各浇口的长度

。为保证浇口平衡进料，确

定浇口截面的尺寸。

图

浇口平衡计算实例

解：从图

中的型腔排布可看出，

对称布置，流道的长度相同；

对称相同；

对称相同。为了避免两浇口和中间浇口的截面相差过大，

可以

、

、

为基准，先求出这两组浇口的截面尺寸，再求另外三组浇口的截面尺寸。
\[A_r = \frac{d_r^2}{4} \pi \text{ mm}^2 = 28.27 \text{ mm}^2 \]

2. \[A_{gB} = 0.07A_r = 0.07 \times 28.27 \text{ mm}^2 = 1.98 \text{ mm}^2 \]

3. \[t_{2gB} = 0.81 \text{ mm} \quad b_{2gB} = 3t_{2gB} = 2.43 \text{ mm} \]

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_e)</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>(b)</td>
<td>1.47</td>
<td>2.43</td>
<td>2.82</td>
<td>2.43</td>
<td>2.82</td>
</tr>
<tr>
<td>(t)</td>
<td>0.49</td>
<td>0.81</td>
<td>0.94</td>
<td>0.81</td>
<td>0.94</td>
</tr>
</tbody>
</table>

3. 3.7 冷料穴和拉料杆设计

冷料穴是浇注系统的结构组成之一。冷料穴的作用是容纳浇注系统流道中料流的前锋冷料，以免这些冷料注入型腔，主流道冷料穴结构如图所示，多型腔模具分型面上的分流道冷料穴如图所示。主流道末端的冷料穴还有便于在该处设置主流道拉料杆的功能。在模具分型时，注射凝料从定模浇口套中被拉出，最后推出机构开始工作，将塑件和浇注系统凝料一起推出模外。

主流道拉料杆有两种基本形式。
一种是适于推杆起模的拉料杆，其固定在推杆固定板上。图所示多型腔模具分型面上的分流道冷料穴——型腔；——浇口；——冷料穴；——三次分流道；——二次分流道；——一次分流道。

图的字形拉料杆是最常用的一种形式。工作时依靠字形钩将主流道凝料拉出浇口套，如选择好字形的方向，凝料会由自重而自动脱落，不需要人工取出。

对于图和，和的形式，在分型时靠动模板上的反锥度穴和浅圆环槽的作用将主流道凝料拉出浇口套，然后靠后面的推杆强制将其推出。

另一种拉料杆是仅适于推件板脱模的拉料杆，其典型的形式是球形头拉料杆，固定在动模板上，如图所示；图所示为菌形头拉料杆，它是头部凹下去的部分将主流道从浇口套中拉出来，然后在推件板推出时，将主流道凝料从拉料杆的头部强制推出；图是靠塑料的收缩包紧力使主流道凝料包紧在中间拉料杆（带有分流锥的型芯）上以及靠环行浇口与塑件的连接将主流道凝料拉出浇口套，然后靠推件板将塑件和主流道凝料一起推出模外，主流道凝料能在推出时自动脱落。

图适于推杆脱模的拉料杆
图适于推件板脱模的拉料杆
当塑料熔体充填型腔时，必须顺序地排出型腔及浇注系统内的空气及塑料受热而产生的气体。如果气体不能被顺利地排出，塑件会由于填充不足而出现气泡、接缝或表面轮廓不清等缺陷，甚至气体受压而产生高温，使塑料焦化。

注射模的排气通常采取以下四种方式，见表3-8。

<table>
<thead>
<tr>
<th>序号</th>
<th>排气方式</th>
<th>适用范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>利用配合间隙排气</td>
<td>中小型简单型腔模具</td>
</tr>
<tr>
<td>2</td>
<td>在分型面上开设排气槽排气</td>
<td>大型模具，型腔最后充填的部位在分型面上。图3-8排气槽为燕尾式，排气顺畅;图3-9排气槽为转弯形式，可以防止喷出伤人，也可降低动能的损失</td>
</tr>
<tr>
<td>3</td>
<td>利用排气塞排气</td>
<td>用于无法用上述两种方法排气的模具</td>
</tr>
<tr>
<td>4</td>
<td>强制性排气</td>
<td>大型、复杂或加热易放出热量的塑料</td>
</tr>
</tbody>
</table>

![图3-8 排气槽示意图](image)

![图3-9 排气槽示意图](image)
表 3-9

<table>
<thead>
<tr>
<th>塑料制品深度</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>0.02</td>
</tr>
<tr>
<td>PP</td>
<td>0.01~0.02</td>
</tr>
<tr>
<td>PS</td>
<td>0.02</td>
</tr>
<tr>
<td>ABS</td>
<td>0.03</td>
</tr>
<tr>
<td>PA</td>
<td>0.01</td>
</tr>
<tr>
<td>PC</td>
<td>0.01~0.03</td>
</tr>
<tr>
<td>POM</td>
<td>0.01~0.03</td>
</tr>
</tbody>
</table>

3.4 成形零部件设计

3.4.1 成形零部件结构设计

1. 整体式型腔结构

2. 组合式型腔结构

3. 整体嵌入式型腔
用螺钉固定，在固定板下部设计有装拆型腔用的工艺通孔，这种结构可省去垫板。

局部镶嵌组合式型腔

局部镶嵌组合式型腔结构如图所示。为了加工方便或由于型腔的某一部分容易损坏，需要经常更换，应采用这种局部镶嵌的办法。

图所示异型型腔，先钻周围的小孔，再加工大孔，在小孔内镶入芯棒，组成型腔；图所示型腔内有局部凸起，可将此凸起部分单独加工，再把加工好的镶块利用圆形槽

3.28

2

3.29

3.29a

3.29b
图29是利用局部镶嵌的办法加工圆形环的凹模;图29是利用局部镶嵌的办法加工长条形型腔。底部镶拼式型腔的结构如图30所示。为了机械加工、研磨、抛光、热处理方便,形状复杂的型腔底部可以设计成镶拼式结构。选用这种结构时应注意平磨结合面,抛光时应仔细,以保证结合处锐棱(不能带圆角)不影响脱模。此外,底板还应有足够的厚度以免变形而进入塑料。图30底部镶拼式型腔

侧壁镶拼式型腔如图31所示。这种方式便于加工和抛光,但是一般很少采用,这是因为在成形时,熔融的塑料成形压力使螺钉和销钉产生变形,从而达不到产品的技术要求指标。图31侧壁镶拼式型腔

四壁拼合式型腔如图32所示。四壁拼合式型腔适用于大型和形状复杂的型腔,可以把成形零部件设计...
它的四壁和底板分别加工经研磨后压入模架中。为了保证装配的准确性,侧壁之间采用锁扣连接,连接处外壁留有0.3~0.4 mm的间隙,以使内侧接缝紧密,减少塑料的挤入。

图47所示的四壁拼合式型腔—模套;1、2—侧拼块;3—底拼块

型芯的结构设计

成形塑件内表面的零件称型芯,主要有主型芯、小型芯等。对于简单的容器,如壳、罩、盖之类的塑件,成形其主要部分内表面的零件称主型芯,而将成形其他小孔的型芯称为小型芯或成形杆。

主型芯的结构设计

按结构主型芯可分为整体式和组合式两种。

整体式结构

图48所示的整体式主型芯结构,其结构牢固,但不便加工,消耗的模具钢多,主要用于工艺实验或小型模具上的简单型芯。

组合式结构

组合式主型芯结构如图49所示。为了便于加工,形状复杂型芯往往采用镶拼组合式结构,这种结构是将型芯单独加工后,再镶入模板中。图50为通孔台肩式,型芯用台肩和模板连接,再用垫板、螺钉紧固,连接牢固,是最常用的方法。对于固定部分是圆柱面,而型芯又有方向性的场合,可采用销钉或键定位。图51为通孔无台肩式结构。图52为盲孔式的结构。图53适用于塑件内形复杂、机加工困难的型芯。

采用组合式主型芯的注意点

镶拼组合式型芯的优缺点和组合式型腔的优缺点基本相同。设计和制造这类型芯时,必须注意结构合理,应保证型芯和镶块的强度,防止热处理时变形且应避免尖角与壁厚突变。

注意:

当小型芯靠主型芯太近,如图54所示,热处理时薄壁部位易开裂,故应采用图55结构,将大的型芯制成整体式,再镶入小型芯。
组合式主型芯结构

边不应该影响脱模取件。如图所示结构的溢料飞边的方向与塑料脱模方向相垂直,影响塑件的取出;而采用图的结构,其溢料飞边的方向与脱模方向一致,便于脱模。

图—小型芯；*—大型芯

便于脱模的镶拼型芯组合结构

—型芯；*—型腔零件；!—垫板

小型芯的结构设计

小型芯是用来成形塑件上的小孔或槽。小型芯单独制造后,再嵌入模板中。

圆形小型芯的几种固定方法

圆形小型芯采用图所示的几种固定方法。图使用台肩固定的形式,下面有垫板压紧;图中的固定板太厚,可在固定板上减小配合长度,同时细小的型芯制成台阶的形式;图是型芯细小而固定板太厚的形式,型芯镶入后,在下端用圆柱垫垫平;图适用于固定板厚、无垫板的场合,在型芯的下端用螺塞紧固;图是型芯镶入后,在另一端采用铆接固定的形式。
圆形小型芯的固定方式

—圆形小型芯；
—固定板；
—垫板；
—圆柱垫；
—螺塞

异形小型芯的几种固定方法

对于异形型芯，为了制造方便，常将型芯设计成两段。型芯的连接固定段制成圆形台肩和模板连接，如图所示；也可以用螺母紧固，如图所示。

相互靠近的多个小型芯的固定

如图所示的多个相互靠近的小型芯，如果台肩固定时，台肩发生重叠干涉，可将台肩相碰的一面磨去，将型芯固定板的台阶孔加工成大圆台阶孔或长腰圆形台阶孔，然后再将型芯镶入。

螺纹型芯和螺纹型环结构设计

螺纹型芯和螺纹型环是分别用来成形塑件内螺纹和外螺纹的活动镶件。另外，螺纹型芯和螺纹型环的设计需要考虑注射模的单分型面要求。
螺纹型环也是可以用来固定带螺纹的孔和螺杆的嵌件。成形后，螺纹型芯和螺纹型环的脱卸方法有两种，一种是模内自动脱卸，另一种是模外手动脱卸，这里仅介绍模外手动脱卸螺纹型芯和螺纹型环的结构及固定方法。

螺纹型芯的结构要求

螺纹型芯按用途分直接成形塑件上螺纹孔和固定螺母嵌件两种，这两种螺纹型芯在结构上没有原则上的区别。用来成形塑件上螺纹孔的螺纹型芯在设计时必须考虑塑料收缩率，其表面粗糙度值要小（Ra < 0.4 µm），一般应有1°的脱模斜度。螺纹始端和末端按塑料螺纹结构要求设计，以防止从塑件上拧下，拉毛塑料螺纹。固定螺母的螺纹型芯在设计时不考虑收缩率，按普通螺纹制造即可。螺纹型芯安装在模具上，成形时要可靠定位，不能因合模振动或料流冲撞而移动，开模时应能与塑件一道取出且便于装卸。螺纹型芯与模板内安装孔的配合公差一般为H8/f8。

螺纹型芯在模具上安装的形式

图(a)为螺纹型芯的安装形式，其中图(a)、(b)、(c)是成形内螺纹的螺纹型芯，图(d)、(e)、(f)是安装螺纹嵌件的螺纹型芯。图(a)是利用锥面定位和支承的形式；图(b)是利用大圆柱面定位和台阶支承的形式；图(c)是用圆柱面定位和垫板支承的形式；图(d)是利用嵌件与模具的接触面起支承作用，防止型芯受压下沉；图(e)是将嵌件下端以锥面镶入模板中，以增加嵌件的稳定性，并防止塑料挤入嵌件的螺孔中；图(f)是将小直径螺纹嵌件直接插入固定在模具的光杆型芯上，因螺纹牙沟槽很细小，塑料仅能挤入一小段，并成形零部件设计。
不妨碍使用，这样可省去模外脱卸螺纹的操作。螺纹型芯的非成形端应制成方形或将相对应着的两边磨成两个平面，以便在模外用工具将其旋下。

图(a)带弹性连接的螺纹型芯的安装
固定在立式注射机的动模部分的螺纹型芯，由于合模时冲击振动较大，螺纹型芯插入时应有弹性连接装置，以免造成型芯脱落或移动，导致塑件报废或模具损伤。图(b)是带豁口柄的结构，豁口柄的弹力将型芯支承在模具内，适用于直径小于(\(d < \))的型芯；图(c)和(d)是用弹簧钢丝定位，常用于直径为(\(d < \))的型芯上；当螺纹型芯直径大于(\(d > \))时，可采用图(e)的结构，用钢球弹簧固定；而当螺纹型芯直径大于(\(d > \))时，则可反过来将钢球和弹簧装置在型芯杆内；图(f)是利用弹簧卡圈固定型芯；图(g)是用弹簧夹头固定型芯的结构。

图带弹性连接的螺纹型芯的安装的形式
螺纹型环
螺纹型环常见的结构如图所示。图(a)是整体式螺纹型环，型环与模板的配合用(\(H8/f8\))，配合段长(\(8 \text{ mm} \))；图(b)是组合式型环，型环由两半瓣拼合而成，两半瓣中间用导向销定位。成形后，可用尖劈状卸模器楔入型环两边的楔形槽撬口内，使螺纹型环分开，这种方法快而省力，但该方法会在成形的塑料外螺纹上留下难以修整的拼合痕迹，因此

第3章 单分型面注射模
3.4.2 成形零部件设计

1. 计算成形零部件工作尺寸要考虑的要素

成形零件工作尺寸指直接用来构成塑件型面的尺寸，例如型腔和型芯的径向尺寸、深度和高度尺寸、孔间距离尺寸、孔或凸台至某成形表面的距离尺寸、螺纹成形零件的径向尺寸和螺距尺寸等。

塑件的收缩率波动

塑件成形后的收缩变化与塑料的品种、塑件的形状、尺寸、壁厚、成形工艺条件、模具的结构等因素有关，所以确定准确的收缩率是很困难的。工艺条件、塑料批号发生的变化会造成塑件收缩率的波动，其塑料收缩率波动误差为

\[\delta_s = S_{max} - S_{min} \]

式中

- \(\delta_s \) ——塑料收缩率波动误差，\(\text{mm} \)
- \(S_{max} \) ——塑料的最大收缩率
- \(S_{min} \) ——塑料的最小收缩率
- \(L_s \) ——塑件的基本尺寸，\(\text{mm} \)

实际收缩率与计算收缩率会有差异，按照一般的要求，塑料收缩率波动所引起的误差应小于塑件公差的1/4。

模具成形零件的制造误差

模具成形零件的制造精度是影响塑件尺寸精度的重要因素之一。模具成形零件的制造精度愈低，塑件尺寸精度也愈低。一般成形零件工作尺寸制造公差值取塑件公差值的1/4或取1/2级作为制造公差，组合式型腔或型芯的制造公差应根据尺寸链来确定。
模具在使用过程中,由于塑料熔体流动的冲刷、脱模时与塑件的摩擦、成形过程中可能产生的腐蚀性气体的锈蚀以及由于以上原因造成的模具成形零件表面粗糙度值提高而要求重新抛光等,均造成模具成形零件尺寸的变化,型腔的尺寸会变大,型芯的尺寸会减小。

这种由于磨损而造成的模具成形零件尺寸的变化值与塑件的产量、塑料原料及模具等都有关系,在计算成形零件的工作尺寸时,对于批量小的塑件,且模具表面耐磨性好的(如高硬度模具材料、模具表面进行过镀铬或渗氮处理的),其磨损量应取小值;对于玻璃纤维做原料的塑件,其磨损量应取大值;对于与脱模方向垂直的成形零件的表面,磨损量应取小值,甚至可以不考虑磨损量,而与脱模方向平行的成形零件的表面,应考虑磨损;对于中、小型塑件,模具的成形零件最大磨损可取塑件公差的$\frac{1}{6}$,而大型塑件,模具的成形零件最大磨损应取塑件公差的$\frac{1}{6}$以下。

成形零件的最大磨损量用δ_m表示,一般取$\frac{1}{6}$。

模具安装配合的误差

模具的成形零件由于配合间隙的变化,会引起塑件的尺寸变化。例如型芯按间隙配合安装在模具内,塑件孔的位置误差要受到配合间隙值的影响;若采用过盈配合,则不存在此误差。

模具安装配合间隙的变化而引起塑件的尺寸误差用δ_i表示。

塑件的总误差

综上所述,塑件在成形过程产生的最大尺寸误差应该是上述各种误差的总和,即

$$
\delta = \delta_s + \delta_e + \delta_c + \delta_i
$$

式中

δ_s———塑件的成形误差；

δ_e———塑料收缩率波动而引起的塑件尺寸误差；

δ_c———模具成形零件的制造公差；

δ_i———模具成形零件的最大磨损量；

δ_i———模具安装配合间隙的变化而引起塑件的尺寸误差。

塑件的成形误差应小于塑件的公差值,即

$$
\delta_s < \Delta
$$

考虑塑件尺寸和精度的原则

在一般情况下,塑料收缩率波动、成形零件的制造公差和成形零件的磨损是影响塑件尺寸和精度的主要原因。对于大型塑件,其塑料收缩率对塑件的尺寸公差影响最大,应稳定成形工艺条件,并选择波动较小的塑料来减小塑件的成形误差;对于中、小型塑件,成形零件的制造公差及磨损对塑件的尺寸公差影响最大,应提高模具精度等级和减小磨损来减小塑件的成形误差。
由于多数情况下，塑料的收缩率是一个波动值，常用平均收缩率来代替塑料的收缩率，塑料的平均收缩率为

$$ S = \frac{S_{\text{max}} - S_{\text{min}}}{2} \times 100\% $$

式中

- S —— 塑料的平均收缩率;
- S_{max} —— 塑料的最大收缩率;
- S_{min} —— 塑料的最小收缩率。

成形零件尺寸的计算

图所示为塑件尺寸与模具成形零件尺寸的关系，模具成形零件尺寸决定于塑件尺寸。

表14.3 塑件尺寸与模具成形零件工作尺寸的取值规定

<table>
<thead>
<tr>
<th>序号</th>
<th>塑件尺寸</th>
<th>塑件尺寸的分类</th>
<th>塑件尺寸的取值规定</th>
<th>成形零件</th>
<th>成形零件尺寸的取值规定</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L, H</td>
<td>L, H_s</td>
<td>Δ</td>
<td>L_M, H_M</td>
<td>δ_s</td>
</tr>
<tr>
<td>2</td>
<td>l, h</td>
<td>l, h_s</td>
<td>Δ</td>
<td>l_M, h_M</td>
<td>$-\delta_s$</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>C_s</td>
<td>$\pm \frac{\Delta}{2}$</td>
<td>C_M</td>
<td>$\pm \frac{\delta_s}{2}$</td>
</tr>
</tbody>
</table>

表14.4 塑件尺寸的径向尺寸计算

<table>
<thead>
<tr>
<th>序号</th>
<th>塑件尺寸</th>
<th>塑件尺寸的径向尺寸计算</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$L_M^{0.5}$</td>
<td>$1 + S[L_a - x\Delta]^{0.5}$</td>
</tr>
<tr>
<td>2</td>
<td>L_a</td>
<td>$x = 0.5$</td>
</tr>
<tr>
<td>3</td>
<td>$L_M^{x\delta_s}$</td>
<td>$L_M^{x\delta_s}$</td>
</tr>
</tbody>
</table>

表14.5 塑件尺寸的中心距计算

<table>
<thead>
<tr>
<th>序号</th>
<th>塑件尺寸</th>
<th>塑件尺寸的中心距计算</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$l_M^{0.5}$</td>
<td>$1 + S[l_a + x\Delta]^{0.5}$</td>
</tr>
<tr>
<td>2</td>
<td>l_a</td>
<td>$x = 0.75$</td>
</tr>
<tr>
<td>3</td>
<td>$l_M^{0.5}$</td>
<td>$l_M^{0.5}$</td>
</tr>
</tbody>
</table>
由于塑料收缩率等的影响,用标准螺纹型环和螺纹型芯成形的塑件,其螺纹不会标准化。

螺纹型环和螺纹型芯工作尺寸的计算

表 3 - 12

<table>
<thead>
<tr>
<th>H_0</th>
<th>H_z</th>
<th>h_M</th>
<th>C_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - S[H_z - x\Delta z]</td>
<td>1 + S[C_z + \delta_z]</td>
<td>S_{max} - S_{min}</td>
<td>h</td>
</tr>
</tbody>
</table>

式中

\[H_0 \] ——塑件的内形深度的最小尺寸;

\[H_z \] ——塑件的高度最大尺寸;

\[h_M \] ——螺纹型环和螺纹型芯的大、中、小径中最小者;

\[C_M \] ——塑件的高度最大尺寸;

\[\delta_z \] ——螺纹型环和螺纹型芯尺寸公差。

螺纹型环和螺纹型芯尺寸的计算

计算公式

\[h_M = 1 + S[h_z + \left(\frac{1}{2} - \frac{1}{3} \right)\Delta z] \]

计算步骤

1. 计算螺纹型环和螺纹型芯的尺寸公差 \(\delta_z \)。
2. 计算螺纹型环和螺纹型芯的工作尺寸 \(h_M \)。
3. 校核塑件的内形深度最小尺寸 \(C_M \)。

注意事项

- 塑件高度尺寸仅考虑受深、高度尺寸的影响。
- 其余各符号的意义同上。
螺距尺寸

$$ P_m \pm \frac{\delta_s}{2} = 1 + 8P_s \pm \frac{\delta_s}{2} $$

3 – 31

<table>
<thead>
<tr>
<th>式中</th>
<th>P_m ——螺纹型环或螺纹型芯螺距</th>
<th>P_s ——塑件外螺纹或内螺纹螺距的基本尺寸</th>
<th>δ_s ——螺纹型环、螺纹型芯螺距制造公差,查表</th>
</tr>
</thead>
</table>

牙尖角

如果塑料均匀地收缩,则不会改变牙尖角的度数,公制螺纹的牙尖角为 60°, 英制螺纹的牙尖角为 55°.

表 3 – 13 螺纹型环、螺纹型芯制造公差

<table>
<thead>
<tr>
<th></th>
<th>M3 ~ M12</th>
<th>M14 ~ M33</th>
<th>M36 ~ M45</th>
<th>M46 ~ M68</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>粗牙</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>窄</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>中径制造公差</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>广</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>小径制造公差</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 3 – 14 螺纹型环、螺纹型芯螺距制造公差

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>δ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ~ 10</td>
<td>≤ 12</td>
<td>0.01 ~ 0.03</td>
</tr>
<tr>
<td>12 ~ 22</td>
<td>12 ~ 20</td>
<td>0.02 ~ 0.04</td>
</tr>
<tr>
<td>24 ~ 68</td>
<td>> 20</td>
<td>0.03 ~ 0.05</td>
</tr>
</tbody>
</table>

3.4.3 成形零部件刚度和强度校核

成形零部件刚度和强度计算时考虑的因素

成形零部件在成形过程中受到塑料熔体的高压作用,应具有足够的强度和刚度。理论分析和生产经验表明,在设计成形零部件时,应考虑以下因素进行强度和刚度的校核:

1. 型腔受到塑料熔体的高压作用,应具有足够的强度和刚度。
2. 制造过程中可能会发生模具的变形和压痕等现象,需要合理设计模具结构和材料。
3. 成形零部件的形状应尽量简单,以便于加工和安装。

3.4.3 成形零部件设计

成形零部件设计

应根据产品要求和使用条件进行设计,确保产品的性能和使用寿命。同时,在设计过程中应考虑以下几点:

1. 结构合理: 产品设计应遵循结构简单、加工方便、装配容易的原则。
2. 制造工艺: 选择合适的材料和加工工艺,保证产品质量和生产效率。
3. 使用条件: 产品设计应考虑使用环境和使用条件,确保产品的可靠性和耐用性。

在设计成形零部件时,应充分考虑上述因素,确保产品的性能和质量。
实践表明,大尺寸型腔,刚度不足是主要矛盾,型腔应以满足刚度条件为准(即型腔的弹性变形不超过允许变形量)。而对于小尺寸的型腔,强度不足是主要矛盾,型腔应以满足强度条件为准(即型腔在各种受力形式下的应力值不得超过模具材料的许用应力)。

强度不足,会使模具发生塑性变形,甚至破碎,因此,强度计算的条件是满足受力状态下的许用应力。而刚度不足,导致型腔尺寸扩大,其结果会使注射时产生溢料现象,会使塑件的精度降低或脱模困难。因此,刚度计算的条件可以从以下几个方面来考虑:

1. 防止溢料
 当高压熔体注入型腔时,型腔的某些配合面产生间隙,间隙过大则会产生溢料,如图3.44所示。在不产生溢料的前提下,将允许的最大间隙值作型腔的刚度条件。各种常用塑料的最大不溢料间隙值见表3.15。

<table>
<thead>
<tr>
<th>不发生溢料的间隙值</th>
<th>粘度特性</th>
<th>塑料品种举例</th>
<th>允许变形值</th>
</tr>
</thead>
<tbody>
<tr>
<td>低黏度塑料</td>
<td>尼龙(PA6),聚乙烯(PE),聚丙烯(PP),聚甲醛(POM)</td>
<td>≤0.025 ~ 0.040</td>
<td></td>
</tr>
<tr>
<td>中黏度塑料</td>
<td>聚苯乙烯(PS),ABS,聚甲基丙烯酸甲酯(PMMA)</td>
<td>≤0.05</td>
<td></td>
</tr>
<tr>
<td>高黏度塑料</td>
<td>聚碳酸酯(PC),聚酯(PET),PSF,聚四氟乙烯(PFO)</td>
<td>≤0.06 ~ 0.08</td>
<td></td>
</tr>
</tbody>
</table>

2. 保证塑件尺寸精度
 当塑件要求整体或部分有较高的精度时,模具就必须要有很好的刚度,以保证塑料熔体在注入型腔时不产生过大的弹性变形。表3.16列出了保证塑件尺寸精度的刚度条件的经验公式。

<table>
<thead>
<tr>
<th>塑件尺寸经验公式</th>
<th>δmax ≤ δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10</td>
<td>(\Delta_i \cdot \frac{3}{4})</td>
</tr>
<tr>
<td>>10 ~ 50</td>
<td>(\Delta_i \cdot \frac{3}{4} \cdot \frac{1}{1 + \Delta_i})</td>
</tr>
<tr>
<td>>50 ~ 200</td>
<td>(\Delta_i \cdot \frac{3}{4} \cdot \frac{1}{1 + \Delta_i})</td>
</tr>
<tr>
<td>>200 ~ 500</td>
<td>(\Delta_i \cdot \frac{3}{4} \cdot \frac{1}{1 + \Delta_i})</td>
</tr>
</tbody>
</table>
续表

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注: 为塑件精度等级, 为塑件尺寸公差值。

保证塑件顺利脱模

如果凹模的刚度不足，在熔体高压作用下会产生过大的弹性变形，当变形量超过塑件的收缩量时，塑件被紧紧包住而难以脱模，强制顶出易使塑件划伤或破裂，因此型腔的允许弹性变形量应小于塑件壁厚的收缩值，即

\[\Delta_i = \frac{1}{1 + \Delta_i} \]

式中

\[\Delta_i \] ——保证塑件顺利脱模的型腔允许弹性变形量；

\[h \] ——塑件壁厚；

\[\alpha \] ——塑料的平均收缩率。

上述要求在设计模具时，以这些条件中最苛刻的(即允许的最小变形量)为设计标准。

型腔侧壁和底板厚度的计算

对凹模的侧壁厚和底板的厚度作精确的力学计算是相当困难，一般在工程设计上常采用以表所列计算公式来近似地计算凹模的侧壁厚和底板的厚度。

表

<table>
<thead>
<tr>
<th>类型</th>
<th>图形</th>
<th>部位</th>
<th>按强度计算</th>
<th>按刚度计算</th>
</tr>
</thead>
<tbody>
<tr>
<td>圆形</td>
<td>凹模</td>
<td>整体</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>式合组式</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.17

| | | | | | |
|---|---|---|---|---|
| | | | | |
| | | | | |

3.32

\[\delta < tS \]

3.33

\[s \geq r \left(\sqrt{\frac{\sigma}{\sigma^2 - 2p}} - 1 \right) \]

\[s \geq 1.15 \sqrt[3]{\frac{ph_1}{\delta}} \]

3.34

\[t \geq 0.87 \sqrt{\frac{pr^4}{\delta}} \]

3.35

\[t \geq 0.56 \sqrt{\frac{pr^4}{\delta}} \]

3.37

\[s \geq r \left(\sqrt{\frac{\sigma}{\sigma^2 - 2p}} - 1 \right) \]

\[s \geq \sqrt{1 - \mu + \frac{\delta}{rp}} - 1 \]

3.38

\[t \geq \sqrt[3]{0.74 - \frac{pr^4}{\delta}} \]

3.39

\[t \geq \sqrt[3]{1.22pr^2} \]

3.40

\[t \geq \sqrt[3]{0.74 - \frac{pr^4}{\delta}} \]
<table>
<thead>
<tr>
<th>类型</th>
<th>部位</th>
<th>按强度计算</th>
<th>按刚度计算</th>
</tr>
</thead>
<tbody>
<tr>
<td>矩形模</td>
<td>整体式组合</td>
<td>$H_1 < 0.41$</td>
<td>$s \geq \sqrt{3\rho H_1 l (1 + W_a)} / \sigma$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 - 41$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 - 42$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 - 43$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$H_1 < 0.41$</td>
<td>$s \geq \sqrt{3\rho H_1 l (1 + W_a)} / \sigma$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 - 44$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 - 45$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t \geq \frac{a'pb^2}{\sqrt{4\rho \sigma}}$</td>
<td>$t \geq \sqrt{\frac{c'pb^2}{4\rho \sigma}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 - 46$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 - 47$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 - 48$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3 - 49$</td>
</tr>
</tbody>
</table>

式中

- s —— 型腔侧壁厚度，mm
- p —— 型腔内熔体的压力，MPa
- H_1 —— 承受熔体压力的侧壁高度，mm
- l —— 型腔侧壁长边长，mm
- E —— 2.06 x 10^5 MPa
- H —— 型腔侧壁总高度，mm
- δ —— 允许变形量，mm
- r ——
- b —— 矩形型腔侧壁的短边长，mm
- h —— 矩形底板（支承板）的厚度，mm
- B ——
- L —— 底板总宽度，mm
- $a = \frac{b}{l}$
由 $\frac{H_1}{l}$ 3-18

a'——由 $\frac{l}{b}$ 3-19

c'——由模脚(垫块)之间距离和型腔短边长度比 3-20

<table>
<thead>
<tr>
<th>$\frac{H_1}{l}$</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.2</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>0.903</td>
<td>0.570</td>
<td>0.330</td>
<td>0.188</td>
<td>0.117</td>
<td>0.073</td>
<td>0.045</td>
<td>0.031</td>
<td>0.015</td>
<td>0.006</td>
<td>0.002</td>
</tr>
<tr>
<td>W</td>
<td>0.108</td>
<td>0.130</td>
<td>0.148</td>
<td>0.163</td>
<td>0.176</td>
<td>0.187</td>
<td>0.197</td>
<td>0.205</td>
<td>0.210</td>
<td>0.235</td>
<td>0.254</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\frac{l}{b}$</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2.8</th>
<th>>2.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'</td>
<td>0.3078</td>
<td>0.3834</td>
<td>0.4256</td>
<td>0.4680</td>
<td>0.4872</td>
<td>0.4974</td>
<td>0.5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\frac{l}{b}$</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>1.6</th>
<th>1.7</th>
<th>1.8</th>
<th>1.9</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>c'</td>
<td>0.0138</td>
<td>0.0164</td>
<td>0.0188</td>
<td>0.0209</td>
<td>0.0226</td>
<td>0.0240</td>
<td>0.0251</td>
<td>0.0260</td>
<td>0.0267</td>
<td>0.0272</td>
<td>0.0277</td>
</tr>
</tbody>
</table>

在工厂中，也常用经验数据或者有关表格来进行简化对凹模侧壁和底板厚度的设计。表3-21列举了矩形型腔壁厚的经验推荐数据，可供设计时参考。

<table>
<thead>
<tr>
<th>b</th>
<th>s</th>
<th>s_1</th>
<th>s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>25</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>>40~50</td>
<td>25~30</td>
<td>9 ~ 10</td>
<td>22 ~ 15</td>
</tr>
<tr>
<td>>50~60</td>
<td>30~35</td>
<td>10 ~ 11</td>
<td>25 ~ 28</td>
</tr>
<tr>
<td>>60~70</td>
<td>35~42</td>
<td>11 ~ 12</td>
<td>28 ~ 35</td>
</tr>
<tr>
<td>>70~80</td>
<td>42~48</td>
<td>12 ~ 13</td>
<td>35 ~ 40</td>
</tr>
<tr>
<td>>80~90</td>
<td>48~55</td>
<td>13 ~ 14</td>
<td>40 ~ 45</td>
</tr>
<tr>
<td>>90~100</td>
<td>55~60</td>
<td>14 ~ 15</td>
<td>45 ~ 50</td>
</tr>
<tr>
<td>>100~120</td>
<td>60~72</td>
<td>15 ~ 17</td>
<td>50 ~ 60</td>
</tr>
<tr>
<td>>120~140</td>
<td>72~85</td>
<td>17 ~ 19</td>
<td>60 ~ 70</td>
</tr>
<tr>
<td>>140~160</td>
<td>85~95</td>
<td>19 ~ 21</td>
<td>70 ~ 80</td>
</tr>
</tbody>
</table>
3.5 单分型面注射模具推出机构设计

3.5.1 单分型面注射模具推出机构组成与分类

在注射成形的每个周期中，将塑料制品及浇注系统凝料从模具中脱出的机构称为推出机构，也叫顶出机构或脱模机构。推出机构的动作通常是由安装在注射机上的机械顶杆或液压缸的活塞杆来完成的，如图所示。

推出机构的结构组成一般由推出、复位和导向零件组成。在图中，推出部件由推杆和拉料杆组成，它们固定在推杆固定板和推板之间，两板用螺钉固定连接，注射机上的顶出力作用在推板上。

为了使推出过程平稳，推出零件不至于弯曲或卡死，常设有推出系统的导向机构，即图中的推板导柱和推板导套。

为了使推杆回到原来位置，就要设计复位装置，即复位杆，它的头部设计到动、定模的分

3.5.2 单分型面注射模具推出机构设计

<table>
<thead>
<tr>
<th>2r</th>
<th>(s = R - r)</th>
<th>(s_1 = R - r)</th>
<th>(s_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ～ 40</td>
<td>20</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>> 40 ～ 50</td>
<td>25</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>> 50 ～ 60</td>
<td>30</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>> 60 ～ 70</td>
<td>35</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>> 70 ～ 80</td>
<td>40</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>> 80 ～ 90</td>
<td>45</td>
<td>13</td>
<td>35</td>
</tr>
<tr>
<td>> 90 ～ 100</td>
<td>50</td>
<td>14</td>
<td>40</td>
</tr>
<tr>
<td>> 100 ～ 120</td>
<td>55</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>> 120 ～ 140</td>
<td>60</td>
<td>16</td>
<td>48</td>
</tr>
<tr>
<td>> 140 ～ 160</td>
<td>65</td>
<td>17</td>
<td>52</td>
</tr>
<tr>
<td>> 160 ～ 180</td>
<td>70</td>
<td>19</td>
<td>55</td>
</tr>
<tr>
<td>> 180 ～ 200</td>
<td>75</td>
<td>21</td>
<td>58</td>
</tr>
</tbody>
</table>
推出机构的设计要求

1. 塑件留在动模
 在模具的结构上应尽量保证塑件留在动模一侧，因为大多数注射机的推出机构都设在动模一侧。如果不能保证塑件留在动模上，就要将制品进行改形或强制留模；如这两点仍做不到，就要在定模上设计推出机构。

2. 塑件在推出过程中不变形、不损坏
 保证塑件在推出过程中不变形、不损坏是推出机构应该达到的基本要求，所以设计模具时要正确分析塑件对模具包紧力的大小和分布情况，用此来确定合适的推出方式、推出位置、型腔的数量和推出面积等。

3. 不损坏塑件的外观质量
 对于外观质量要求较高的塑件，推出的位置应尽量设计在塑件内部，以免损伤塑件的外观。由于塑件收缩时包紧型芯，因此推出力作用点应尽可能靠近型芯，同时推出力应施于塑件上强度、刚度最大的地方，如筋部、凸台等处，推杆头部的面积也尽可能大些，保证制品不损坏。

4. 合模时应使推出机构正确复位
 推出机构设计时应考虑合模时推出机构的复位，在斜导杆和斜导柱侧向抽芯及其他特殊情况。
在注射动作结束后，塑件在模内冷却定形，由于体积收缩，对型芯产生包紧力，当其从模
具中推出时，就必须克服因包紧力而产生的摩擦力。对于不带通孔的筒、壳类塑料制件，脱模
推出时还需克服大气压力。开始脱模时所需的脱模力最大，其后推出力的作用仅仅是为了克服推出机构移动的摩擦
力，所以计算脱模力的时候，总是计算刚开始脱模时的初始脱模力。

图所示为塑件在脱模时型芯的受力分析情况。推出力
的作用，使塑件对型芯的总压力(塑件收
缩引起)降低了，因此，推出时的摩擦力
为
，

式中
——塑件包络型芯的面积,
——塑件对型芯单位面积上的包紧力。一般情况下，模外冷却的塑件，取
。模内冷却的塑件，取
。从式可以看出，脱模力的大小与塑件壁厚、与垂直于脱模方向塑件的投影面积、
型芯长度、塑料的收缩率、脱模斜度有关，同时也与塑料与钢(型芯材料)之间的摩擦系数有
关。另外，还与型芯数目有关。实际上，影响脱模力的因素很多，在计算公式中不能一一反
映，以上公式只能做大概的分析和估算。
3.5.3 推杆推出机构

1. 推杆推出机构

推出机构设计

推出机构

一次推出机构又称简单脱模机构,是最常用的推出结构形式,它是指开模后塑件在推出零件的作用下通过一次动作将制品从模具中脱出,如图所示。一次推出机构包括推杆推出机构、推管推出机构、推件板的推出机构、活动嵌件及凹模推出机构和多元推出机构等。

推杆的优点和适用的场合

推杆推出机构是整个推出机构中最简单、最常见的一种形式。由于设置推杆的自由度较大,而且推杆截面大部分为圆形,容易达到推杆与模板或型芯上推杆孔的配合精度,推杆推出时运动阻力小,推出动作灵活可靠,损坏后也便于更换,因此在生产中广泛应用,推杆推出机构如图所示。推杆的基本形状

但是因为推杆的推出面积一般比较小,易引起较大局部应力而顶穿塑件或使塑件变形,所以很少用于脱模斜度小和脱模阻力大的管类或箱类塑件。

推杆的基本形状

推杆的基本形状如图所示。图为直通式推杆,尾部采用台肩固定,是最常用的形式;图为阶梯式推杆,由于工作部分较细,故在其后部加粗以提高刚性,一般直径小于130,时采用;图所示为顶盘式推杆,这种推杆加工起来比较困难,装配时也与其他推杆不同,需从动模型芯插入,端部用螺钉固定在推杆固定板上,适合于深筒形塑件的推出。

推杆的工作端面形状

推杆的工作端面的主要形状如图所示,最常用的是圆形,还可以设计成特殊的端面形状,如矩形、三角形、椭圆形、半圆形等。这些特殊形状对于杆来说加
推杆的工作端面的形状

推杆的材料和热处理
推杆的材料常用T8A、T10A、65Mn等碳素工具钢或60~54 HRC,46~50 HRC等弹簧钢等,前者的热处理要求硬度为HRC,后者的热处理要求硬度为HRC。自制的推杆常采用前者,而市场上的推杆标准件多为后者的形式。推杆工作端配合部分的粗糙度值一般取Ra0.8 μm。

推杆的固定形式
图所示为推杆在模具中的固定形式。图所示是最常用的形式,直径为d的推杆,在推杆固定板上的孔应为d+1 mm;图所示为采用垫块或垫圈来代替图中固定板上沉孔的形式,这样可使加工方便;图是推杆底部采用顶丝拧紧的形式,适合于推杆固定板较厚的场合;图用于较粗的推杆,采用螺钉固定。

推杆设计的注意事项
推杆设计时应重点考虑推杆位置的选择。推杆应选在脱模阻力最大的地方,因塑件对型芯的包紧力在四周最大,如塑件较深,应在塑件内部靠近侧壁的地方,如图所示;如果塑件局部有细而深的凸台或筋,则必须在该处设置推杆,如图所示。

推杆不宜设在塑件最薄处,否则很容易使塑件变形甚至破坏,如图所示;必要时,可增大推杆面积来降低塑件单位面积上的受力,如图所示采用顶盘推出。

应考虑推杆本身的刚性。当细长推杆受到较大脱模力时,推杆就会失稳变形,如图所示,这时就必须增大推杆直径或增加推杆的数量。同时要保证塑件推出时受力均匀,从而使塑件推出平稳而且不

第19章 单分型面注射模

图

推杆的固定形式

推杆设计的注意事项

图
推杆位置的选择

图

考虑推杆本身的刚性

推杆的高度

因推杆的工作端面是成形塑件部分的内表面,如果推杆的端面低于或高于该处型面,则在塑件上就会产生凸台或凹痕,影响塑件的使用及美观,因此,通常推杆装入模具后,其端面应与型面平齐或高出

推杆的布置

当塑件各处脱模阻力相同时,应均匀布置推杆,以保证塑件被推出时受力均匀、平稳、不

推管推出机构

推管推出机构是用来推出圆筒形、环形塑件或带有孔的塑件的一种特殊结构形式,其脱模运动方式和推杆相同。

由于推管是一种空心推杆,故整个周边接触塑件,推出塑件的力量均匀,塑件不易变形,也不会留下明显的推出痕迹。

推管推出机构的结构形式

图所示的形式是最简单最常用的结构形式,模具型芯穿过推板固定于动模座板。这种结构的型芯较长,可兼作推出机构的导向柱,多用于脱模距离不大的场合,结构比较可靠。

图所示的形式是型芯用销或键固定在动模板上的结构。这种结构要求在推管的轴向开一长槽,容纳与销(或键)相干涉的部分,槽的位置和长短依模具的结构和推出距离而定,一般是略长于推出距离。特点:与上一种形式相比,这种结构形式的型芯较短,模具结构紧凑;缺点是型芯的紧固力小,适用于受力不大的型芯。
型芯固定在动模垫板上，而推管在动模板内滑动，这种结构可使推管与型芯的长度大为缩短，但推出行程包含在动模板内，致使动模板的厚度增加，用于脱模距离不大的场合。

有关推管的配合图所示。推管的内径与型芯相配合，小直径时选用 H7/f7 的配合，大直径取 H8/f8 的配合；外径与模板上的孔相配合，直径较小时采用 H7/f7 的配合，直径较大时采用 H8/f8 的配合。推管与型芯的配合长度一般比推出行程大 1/4，推管与模板的配合长度一般为推管外径的 1/4 倍，推管固定端外径与模板有单边装配间隙，推管的材料、热处理硬度要求及配合部分的表面粗糙度要求与推杆相同。

推件板的推出机构凡是薄壁容器、壳形塑件以及表面不允许有推出痕迹的塑料制品，可采用推件板推出，推件板推出机构又称顶板顶出机构，它由一块与型芯按一定配合精度相配合的模板和推杆所组成。

特点：推件板推出的特点是顶出力均匀，运动平稳，且推出力大。但是对于截面为非圆形的塑件，其配合部分加工比较困难。图所示，推板和推件板之间采用固定连接的推出结构，即在推杆头部设计成螺纹与推件板连接，以防止推件板在推出过程中脱落。

推件板推出机构的形式推板和推件板之间采用固定连接形式，如图所示，推板和推件板之间采用固定连接形式，即在推杆头部设计成螺纹与推件板连接，以防止推件板在推出过程中脱落。
动作过程:开模后,整个动模(包括推件板推出机构在内)随注射机动模板向左移动,当推板遇到注射机上顶杆时不再移动,推杆也就顶住推件板不动,动模再向左移动,就将塑件从型芯中脱出,达到制品脱模的目的。

其中图6是最常用的一种推件板推出机构形式,图7所示的结构为注射机上的推杆直接作用在推件板上的形式,适用于两侧有顶杆的注射机,此种模具结构简单,但是推板尺寸要适当增大以满足两侧顶杆的间距,并适当加厚推板以增加刚性。图8为推件板镶入动模板内的形式,推杆端部用螺纹与推件板相连接,并且与动模板作导向配合。推出机构工作时,推件板除了与型芯作配合外,还依靠推杆进行支承与导向。这种推出机构结构紧凑,推板在推出过程中也不会掉下。推件板和型芯的配合精度与推管和型芯相同,为H7/17 ~ H8/17的配合。

推板和推件板之间无固定连接形式与前一种结构类似,只是头部没有螺纹和推板连接,如图9所示。这种形式的推杆和推板之间没有固定连接,为了防止在生产中推板从导柱上脱落,必须严格控制推出行程并保证导柱要有足够的长度。

推件板设计的注意事项

1. 减小推件板和型芯摩擦的结构
为了减少推出过程中推件板和型芯的摩擦,装配关系可采用如图10所示的结构,在推件板和型芯间留有1/4, 1/3的间隙(原则上应不擦伤型芯),并采用3, 3的锥面配合,其锥度起到辅助定位作用,防止推件板偏心而引起溢料。

图6—推板;图7—推杆固定板;图8—推杆;图9—推件板

2. 设置进气装置
如果成形的制品为大型深腔的容器,并且还采用软质塑料成形,当推件板推出塑件时,在型芯与塑件中间易出现真空,从而造成脱模困难,甚至使塑件变形损坏,这时应考虑附设进气装置。图11所示的结构是靠大气压的推出机构,开模时,大气克服弹簧力将推杆抬起而进气,塑件就能顺利地从型芯被推出。
推件板推出机构适用于大型塑件、薄壁容器及各种罩壳类塑件的脱模。与推杆、推管推出机构相比，推件板推出机构推出受力均匀、力量大、运动平稳、塑件不易变形、表面无顶痕、结构简单。另外，不需另设复位机构。在合模过程中，待分型面一接触，推件板即可在合模力的作用下回到初始位置。

活动嵌件及型腔推出机构

有一些塑件由于结构形状和所用材料的关系，不能采用推杆、推管、推件板等简单推出机构脱模时，可用成形嵌件或型腔带出塑件。

1. 推杆不固定在活动嵌件的推出机构

图所示，用推杆顶在螺纹型环上，取出制品时连同活动嵌件（即螺纹型环）一同取出，然后将制品与嵌件分离，再将嵌件放入到模具中成形下一个制品。但需注意的是推杆应先复位，以便放入嵌件，本例是采用弹簧来使推杆复位的。

2. 推杆固定在活动嵌件的推出机构

图所示是活动嵌件与推杆用螺纹连接的形式，塑件脱模时，嵌件不与塑件分离，需用手将塑件从活动嵌件上取下。

推件板上有型腔的推出机构

图所示为型腔板将塑件从型芯上推出的形式，推出后，再手工或用其他专用工具将塑件从凹模板中取出，实质上就是推件板上有型腔的推出机构。设计时要注意塑件脱离型芯后，还有一部分塑件的外表面留在推件板的型腔里，需要手工将塑件从推件板上取出，因此推件板上的型腔不能太深，型腔数也不能太多，否则取出塑件将会很困难。另外推杆一定要与推件板用螺纹连接，以防止取塑件时，推件板会从动模导柱上滑落。

多元推出机构

在实际生产中往往遇到一些深腔壳体，薄壁，有局部管形，凸台或金属嵌件等复杂的塑件。
如果采用单一的推出机构，不能保证塑件的质量，这时就要采用两种或两种以上的多元推出机构。

图所示是局部有脱模斜度小并带有很深管状凸台的塑件，在其周边和里面的脱模阻力大，因此采用推杆和推管并用的机构。

图推件板上有型腔的推出机构！

图所示是推管、推件板并用的例子，因为塑件在中间有一凸台，凸台中心有一盲孔，成形后凸台对中心型芯包紧力很大，如果只用推件板脱模，很可能产生断裂或残留的现象，因此增加推管推出机构，可保证塑件顺利脱模。

推出机构的导向装置

为了保证塑件顺利脱模、各个推出部件运动灵活以及推出元件的可靠复位，必须有导向装置配合使用。

推出机构在注射机工作时，每开合模一次，就往复运动一次，除了推杆、推管和复位杆与模板的滑动配合以外，其余部分均处于浮动状态。推杆固定板与推杆的重量不应作用在推杆上，而是由导向零件来支承，因此，必须设计推出机构的导向装置。

图所示是推出系统导向装置结构图。大面积的推出板在推出过程中，防止其歪斜和移动。
扭曲是非常重要的，否则会造成推杆变形、折断或使推板与型芯间磨损研伤，因此要求在推出机构中设计导向装置。

图3.63a和图3.63b的导柱同时还起支承作用，提高了支承板的刚性，也改善了其受力状况。当模具较大，或型腔在分型面上的投影面积较大、生产批量较大时，最好采用这两种形式。图3.63a是推板导柱固定在动模座板上的形式，推板导柱也可以固定在支承板上；图3.63b中推板导柱的一端固定在支承板上，另一端固定在动模座板上，适于大型注射模；图3.63c是将导柱固定在中间垫板上，只起导向作用不起支承作用。由于没有导向套，所以只适用于批量较小的小型模具。

3.5.4 推出机构的复位设计

推出机构在开模推出塑件后，为下一次的注射成形做准备，还必须使推出机构复位，以便恢复完整的模腔，这就必须设计复位装置。复位装置的类型有复位杆复位装置和弹簧复位装置。

复位杆复位

使推出机构复位最简单最常用的方法是在推杆固定板上同时安装复位杆，也叫回程杆。复位杆端面设计在动、定模的分型面上。开模时，复位杆与推出机构一同推出；合模时，复位杆先与定模分型面接触，在动模向定模逐渐合拢过程中，推出机构被复位杆顶住，从而与动模产生相对移动直至分型面合拢，推出机构就回复到原来的位置。这种结构中的合模和复位是同时完成的，如图3.63所示。

复位杆为圆形截面，每副模具一般设置四根复位杆，其位置应对称设在推杆固定板的四周，以便推出机构在合模时能平稳复位。

弹簧复位

图3.63c所示装置为弹簧复位，即利用压缩弹簧的回复力使推出机构复位，其复位先于合模动作完成。

使用弹簧复位结构简单，但必须注意弹簧要有足够的弹力，如弹簧失效，要及时更换。

3.6 温度调节系统设计

3.6.1 模具温度对塑件成形的影响

我们知道塑件是在模具内成形和冷却固化的，而在第一章里，我们也知道了由于每种树脂要求的成形温度和玻璃化温度不同，所以，模具必须有温度调节系统，才能适合每种树脂的成形，高效地进行生产。

温度调节（模具的温度调节指的是对模具进行冷却或加热）既关系到塑件的质量（塑件的尺寸精度、塑件的力学性能和塑件的表面质量），又关系到生产效率。因此，必须根据要求使模具温度控制在一个合理的范围内，以得到高品质的塑件和高的生产率。

一般的塑料都需在$200^\circ C$左右的温度由注射机的喷嘴注射到注射模具内，熔体在$60^\circ C$左右的模具内固化、脱模，其热量除少数辐射、对流到大气环境以外，大部分是由模具内通入的热空气加热的。
冷却水带走；而有些塑料的成形工艺要求模具的温度较高时，模具不能仅靠塑料熔体加热，需对注射模设计加热系统。

由此可见，大多数模具需要设置冷却系统，适用于成形黏度低、流动性好的塑料，如聚乙烯、聚丙烯、聚苯乙烯、等，一般要求模具温度较低（一般小于）；而对于黏度高、流动性差的塑料（如聚碳酸酯、聚砜、聚苯醚等），为了提高充型性能，或模具较大，散热面积广等情况，其模具不仅需要设置冷却系统，还需要设置加热系统，以便在注射之前对模具进行加热。

有的塑料成形，需要模具设置冷却系统和加热系统。当模具的温度达到塑料的成形工艺要求时，即可关闭加热系统，如果在注射一段时间后，模具的温度高于塑料的成形工艺要求时，就要打开模具的冷却系统，使模具的温度在要求的温度下恒温。

对于小型薄壁塑件，且成形工艺要求模温不太高时，可以不设置冷却装置而靠自然冷却。部分塑料树脂与之相适应的模具温度可参见表。

表 3-23
部分树脂的成形温度与模具温度

<table>
<thead>
<tr>
<th>树脂名称</th>
<th>成形温度</th>
<th>模具温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE</td>
<td>190 ~ 240</td>
<td>20 ~ 60</td>
</tr>
<tr>
<td>HDPE</td>
<td>210 ~ 270</td>
<td>20 ~ 60</td>
</tr>
<tr>
<td>PP</td>
<td>200 ~ 270</td>
<td>20 ~ 60</td>
</tr>
<tr>
<td>PA6</td>
<td>230 ~ 290</td>
<td>40 ~ 60</td>
</tr>
<tr>
<td>PA66</td>
<td>280 ~ 300</td>
<td>40 ~ 80</td>
</tr>
<tr>
<td>PA610</td>
<td>230 ~ 290</td>
<td>36 ~ 60</td>
</tr>
<tr>
<td>POM</td>
<td>180 ~ 220</td>
<td>60 ~ 120</td>
</tr>
</tbody>
</table>

设置温度调节装置后，有时会给注射生产带来一些问题。例如，采用冷水调节模温时，大气中水分易凝聚在模具型腔的表壁，影响塑件表面质量，而采用加热措施后，模内一些间隙配合的零件可能由于膨胀而使间隙减小或消失，从而造成卡死或无法工作，这些问题在设计时应予以注意。

模具冷却系统设计

冷却回路的尺寸确定

冷却回路的设计应做到回路系统内流动的介质能充分吸收成形塑件所传导的热量，使模具成形表面的温度稳定地保持在所需的温度范围内，并且要做到使冷却介质在回路系统内流动畅通，无滞留部位。

冷却回路所需的总表面积计算

冷却回路所需总表面积可按下式计算

$$A = \frac{Mq}{3 \cdot 600 \cdot \theta_m - \theta_w}$$

3.6.2

1.

$\scriptstyle 3-54$
式中—冷却回路总表面积,

—单位时间内注入模具中树脂的质量,

—单位质量树脂在模具内释放的热量，(·，值可查表)，

—冷却水的表面传热系数，，

—模具成形表面的温度，

—冷却水的平均温度，。

表 3−24 树脂成形时放出的热量

<table>
<thead>
<tr>
<th>树脂名称</th>
<th>q/MJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>3−4</td>
</tr>
<tr>
<td>AS</td>
<td>3.35</td>
</tr>
<tr>
<td>POM</td>
<td>4.2</td>
</tr>
<tr>
<td>PAVC</td>
<td>2.9</td>
</tr>
<tr>
<td>PMMA</td>
<td>2.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>树脂名称</th>
<th>q/MJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>2.9</td>
</tr>
<tr>
<td>CAB</td>
<td>2.7</td>
</tr>
<tr>
<td>PA6</td>
<td>6.5−7.5</td>
</tr>
<tr>
<td>LDPE</td>
<td>6.9−8.2</td>
</tr>
<tr>
<td>PC</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>树脂名称</th>
<th>q/MJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>5.9</td>
</tr>
<tr>
<td>PA6</td>
<td>56</td>
</tr>
<tr>
<td>PS</td>
<td>2.7</td>
</tr>
<tr>
<td>PTFE</td>
<td>5.0</td>
</tr>
<tr>
<td>PVC</td>
<td>1.7−3.6</td>
</tr>
</tbody>
</table>

表 3−55 水的平均水温

<table>
<thead>
<tr>
<th>平均水温</th>
<th>φ/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6.16</td>
</tr>
<tr>
<td>10</td>
<td>6.60</td>
</tr>
<tr>
<td>15</td>
<td>7.06</td>
</tr>
<tr>
<td>20</td>
<td>7.50</td>
</tr>
<tr>
<td>25</td>
<td>7.95</td>
</tr>
<tr>
<td>30</td>
<td>8.40</td>
</tr>
<tr>
<td>35</td>
<td>8.84</td>
</tr>
<tr>
<td>40</td>
<td>9.28</td>
</tr>
<tr>
<td>45</td>
<td>9.66</td>
</tr>
<tr>
<td>56</td>
<td>10.05</td>
</tr>
</tbody>
</table>

冷却回路总长度可用下式计算

\[L = \frac{1000A}{\pi d} \]

式中—冷却回路总长度，

—冷却回路总表面积，

—冷却水孔直径，

确定冷却水孔的直径时应注意，无论多大的模具，水孔的直径不能大于127，否则冷却水难以成为湍流状态，以致降低热交换效率。一般水孔的直径可根据塑件的平均壁厚来确定。平均壁厚为时，水孔直径可取127。
冷却水体积流量的计算

塑料树脂传给模具的热量与自然对流散发到空气中的模具热量、辐射散发到空气中的模具热量及模具传给注射机热量的差值，即为用冷却水扩散的模具热量。假如塑料树脂在模内释放的热量全部由冷却水传导的话，即忽略其他传热因素，那么模具所需的冷却水体积流量则可用下式计算

$$ q_v = \frac{Mq}{60c\rho (\theta_1 - \theta_2)} $$

式中

- q_v —— 冷却水体积流量，m^3/min
- M —— 单位时间注射入模具内的树脂质量，kg/h
- q —— 单位质量树脂在模具内释放的热量，J/kg
- c —— 冷却水比热容，J/(kg·K)
- ρ —— 冷却水的密度，kg/m^3
- θ_1 —— 冷却水出口处温度，℃
- θ_2 —— 冷却水入口处温度，℃

冷却水回路布置的基本原则

设置冷却水效果良好的冷却水回路的模具是缩短成形周期、提高生产效率最有效的方法。如果不能实现均匀的快速冷却，则会使塑件内部产生应力而导致产品变形或开裂，所以应根据塑件的形状、壁厚及塑料的品种，设计与制造出能实现均一、高效冷却的回路。

冷却水道应尽量多、截面尺寸应尽量大

型腔表面的温度与冷却水道的数量、截面尺寸及冷却水的温度有关。图5所示的情况是在冷却水道数量和尺寸不同的条件下通入不同温度(60.05℃和59.89℃)的冷却水后模内温度分布情况。由图5可知，采用*个较大的水道孔时，型腔表面温度调节系统设计

(a) 合理

(b) 不合理

3.64
温度比较均匀，出现的变化，如图所示；而同一型腔采用个较小的水道孔时，型腔表面温度出现的变化，如图所示。由此可见，为了使型腔表面温度分布趋于均匀，防止塑件不均匀收缩和产生残余应力，在模具结构允许的情况下，应尽量多设冷却水道，并使用较大的截面尺寸。

冷却水道离模具型腔表面的距离当塑件壁厚均匀时，冷却水道到型腔表面最好距离相当，但当塑件壁厚不均匀时，壁厚较厚处冷却水道到型腔表面的距离则应近一些，间距也可适当小些，一般水道孔边至型腔表面距离为。

水道出入口的布置水道出入口的布置应该注意两个问题，即浇口处加强冷却和冷却水道的出入口温差应尽量小。塑料熔体充填型腔时，浇口附近温度最高，距浇口越远，温度就越低，因此浇口附近应加强冷却，其办法就是冷却水道的入口处要设置在浇口的附近，如图所示。

为了缩小出入口冷却水的温差，应根据型腔形状的不同进行水道的排布。图的形式比图的形式要好，即降低了出入口温差，提高了冷却效果。

冷却水道应畅通无阻冷却水通道不应有存水和产生回流的部位，应畅通无阻，要避免过大的压降。

冷却水道的布置应避开塑件易产生熔接痕的部位塑件易产生熔接痕的地方，本身的温度就比较低，如果在该处再设置冷却水道，就会更加促使熔接痕的产生。
常见冷却系统的结构

冷却水道的形式是根据塑件形状而设置的，塑件的形状是多种多样的，因此，对于不同形状的塑件，冷却水道的位置与形状也不一样。

（1）浅型腔扁平塑件的冷却水道

对于扁平的塑件，在使用侧浇口的情况下，常采用动、定模两侧与型腔等距离钻孔的形式设置冷却水道，如图所示；在使用直浇口的情况下，可采用如图所示的形式。

图

（2）中等深度的塑件的冷却水道

采用侧浇口进料的中等深度的壳形塑件，可在型腔底部采用与型腔表面等距离钻孔的形式设置冷却水道。在型芯中，由于容易贮存热量，所以要加强冷却，按塑件形状铣出矩形截面的冷却环形水槽，如图所示；如型腔也要加强冷却，则可采用如图所示的结构铣出冷却环形槽的形式；型芯上的冷却水道也可采用图的形式。

图

（3）深型腔塑件的冷却水道

深型腔塑件模具，最困难的是型芯的冷却问题。图所示的大型深型腔塑件模具，在型腔一侧，其底部可从浇口附近通入冷却水，流经沿矩形截面水槽后流出，其侧部开设圆形截面水道，围绕模腔一周之后从出口排出。型芯上加工出螺旋槽，并在螺旋槽内加工出一定数量的盲孔，而每个盲孔用隔板分成底部连通的两个部分，从而形成型芯中心进水、外测出水的冷却回路。这种隔板形式的冷却水道加工麻烦，隔板与孔配合要求高，否则隔板易转动而达不到要求。隔板常用先车削成形（与孔过渡配合），后把两侧铣削掉或线切割成形的办法制成，然后...

图
大型深型腔塑件的冷却水道

对于大型特深型腔的塑件，其模具的型腔和型芯均可采用在对应的镶拼件上分别开设螺旋槽的形式，如图所示，这种形式的冷却效果特别好。

细长塑件的冷却水道

空心细长塑件需要使用细长的型芯，在细长的型芯上开设冷却水道是比较困难的。当塑件内孔相对比较大时，可采用喷射式冷却，如图所示，即在型芯的中心制出一个盲孔，在孔中插入一根管子，冷却水从中心管子流入，喷射到浇口附近型芯盲孔的底部对型芯进行冷却，然后经过管子与型芯的间隙从出口处流出。

间接式冷却

对于型芯更加细小的模具，可采用间接冷却的方式进行冷却。图所示为冷却水喷射在铍铜制成的细小型芯的后端，靠铍铜良好的导热性能对其进行冷却；图所示为在细小型芯中插入一根与之配合接触很好的铍铜杆，在其另一端加工出翅片，用它来扩大散热面积。
提高水流的冷却效果。

采用间接式冷却对细长型芯冷却

以上介绍了冷却回路的各种结构形式，在设计冷却水道时必须对结构问题加以认真考虑，但另外一点也应该引起重视，那就是冷却水道的密封问题。模具的冷却水道穿过两块或两块以上的模板或镶件时，在它们的结合面处一定要用密封圈或橡胶皮加以密封，以防模板之间、镶拼零件之间渗水，影响模具的正常工作。

模具加热系统设计

当注射成形工艺要求模具温度在80°C以上时，当对大型模具进行预热时，或者采用热流道的模具时，模具中必须设置加热装置。模具的加热方法有好几种。对大型模具的预热除了可采用电加热方法外，还可在冷却水管中通入热水、热油、蒸汽等介质进行预热。对于模温要求高于80°C的注射模或热流道注射模，一般采用电加热的方法。电加热又可分为电阻丝加热和电热棒加热，目前，大部分厂家采用电热棒加热的方法，电热棒有多种成品规格可供选择。在设计模具时，要先计算加热所需的电功率，加工好安装电热棒的孔，然后将购置的电热棒插入其中接通电源即可加热。

3.6.3 理论计算

电加热装置加热模具的总功率可用下式计算

\[P = \frac{mC_p(\theta_2 - \theta_1)}{3600\eta t} \]

式中

- \(P \) ——加热模具所需的总功率，kW
- \(m \) ——模具的质量，kg
- \(C_p \) ——模具材料的比定压热容，kJ/kg·K
- \(\theta_1 \) ——模具初始温度，℃
- \(\theta_2 \) ——模具要求加热后的温度，℃
- \(\eta \) ——加热元件的效率，约0.3～0.5
- \(t \) ——加热时间，h

经验计算

温度调节系统设计
电加热装置加热模具的总功率也可根据经验先查表，取得单位质量模具所需的电功率，然后乘以模具质量即可得到所需的电功率。即

\[Q = mq \]

式中

- \(Q \) —— 加热模具的总功率，
- \(m \) —— 模具质量，
- \(q \) —— 单位质量模具所需的电功率。

见表

<table>
<thead>
<tr>
<th>模具类型</th>
<th>不同质量范围</th>
<th>(q) W/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>电热棒加热</td>
<td>>100 kg</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>40 ~ 100 kg</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td><40 kg</td>
<td>25</td>
</tr>
</tbody>
</table>

3.7

3.7.1

1988年10月1日实施的“国标”GB/T 12556。1

1. 模具的长宽高不大于560 mm × 900 mm。表3-27

<table>
<thead>
<tr>
<th>模块</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>3-73</th>
<th>3-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>模体</td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>3-74</td>
<td>3-28</td>
</tr>
</tbody>
</table>
基本型中小型注射模架

<table>
<thead>
<tr>
<th>组成、功能及用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>定模采用两块模板。动模采用一块模板,无支撑板,设置以推杆推出塑件的机构组成模架。适用于立式与卧式注射机,单分型面一般设在合模面上,可设计成多个型腔成形多个塑件的注射模</td>
</tr>
<tr>
<td>定模和动模均采用两块模板,有支承面,设置以推杆推出塑件的机构组成模架。适用于立式或卧式注射机上,用于直浇道,采用斜导柱侧向抽芯,单型腔成形,其分型面可在合模面上,也可设置斜滑块垂直分型脱模式机构的注射模</td>
</tr>
<tr>
<td>定模采用两块模板,动模采用一块模板,它们之间设置一块推件板连接推出机构,用以推出塑件,无支承面。</td>
</tr>
<tr>
<td>定模和动模均采用两块模板,它们之间设置一块推件板连接推出机构,用以推出塑件,有支承面。</td>
</tr>
</tbody>
</table>

注:根据使用要求选用导向零件和安装形式；

A1 型是以直浇口为主的基本型模架,其功能及通用性强,是国际上使用模架中具有代表性的结构。

<table>
<thead>
<tr>
<th>A1 型</th>
<th>A2 型</th>
<th>A3 型</th>
<th>A4 型</th>
<th>P1 型</th>
<th>P2 型</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
派生型中小型注射模架

表 3.74

派生型模架的组成、功能及用途

P1 型	P2 型	P3 型
P4 型	P5 型	P6 型
P7 型	P8 型	P9 型

注：
1. 派生型P1～P4型模架组合尺寸系列和组合要素均与基本型相同。
2. 其模架结构以点浇口，多分型面为主，适用于多动作的复杂注射模。
3. 扩大了模架应用范围，增大了模架标准的覆盖面。

第3章
单分型面注射模
大型模架标准

大型模架标准中规定的周界尺寸范围为630 mm × 630 mm ~ 1250 mm × 2000 mm，适用于大型热塑性塑料注射模。模架品种有0型、%型组成的基本型（图1）以及由2组成的派生型（图1*），共*个品种。

大型模架的组成、功能及用途见表4 和表4*。

图1！基本型大型注射模架

图1*！派生型大型注射模架

注射模标准模架和常用件

2. GB/T 12555. 1

图1
A型

图1*
B型

3. 75

图1
P1

图1*
P2

图1
P3

图1*
P4

3. 76

图1
A

图1*
B

图1
A1

图1*
B1

图1
A2

图1*
B2

3 -27

3 -28
标准模架的选用要点

在模具设计时，应根据塑件图样及技术要求，分析、计算、确定塑件形状类型、尺寸范围（型腔投影面积的周界尺寸）、壁厚、孔形及孔位、尺寸精度及表面性能要求以及材料性能等，以制定塑件成形工艺，确定进料口位置、塑件重量以及每模塑件数（型腔数），并选定注射机的型号及规格。选定的注射机须满足塑件注射量以及成形压力等要求。为保证塑件质量，还必须正确选用标准模架，以节约设计和制造时间保证模具质量。选用标准模架的程序及要点如下。

（1）模架厚度和注射机的闭合距离

对于不同型号及规格的注射机，不同结构形式的锁模机构具有不同的闭合距离。模架厚度与闭合距离的关系为

\[L_{\text{min}} \leq H \leq L_{\text{min}} \]

（2）开模行程与定、动模分开的间距与推出塑件所需行程之间的尺寸关系

设计时须计算确定，注射机的开模行程应大于取出塑件所需的定、动模分开的间距，而模具推出塑件距离须小于注射机顶出液压缸的额定顶出行程。

（3）选用的模架在注射机上的安装

安装时需注意：模架外形尺寸不应受注射机拉杆的间距影响；定位孔径与定位环尺寸需配合良好；注射机顶出杆孔的位置和顶出行程是否合适；喷嘴孔径和球面半径是否与模具的浇口套孔径和凹球面尺寸相配合；模架安装孔的位置和孔径与注射机的移动模板及固定模板上的相配。

（4）选用模架应符合塑件及其成形工艺的技术要求

为保证塑件质量和模具的使用性能及可靠性，需对模架组合零件的力学性能，特别是它们的强度和刚度进行准确的校核及计算，以确定动、定模板及支撑板的长、宽、厚度尺寸，从而正确的选定模架的规格。

3. 7. 2

1. 定模座板、动模座板的设计

（1）定模座板

使定模固定在注射机的固定工作台面上的模板，如图中的件。

（2）动模座板

使动模固定在注射机的移动工作台面上的模板，如图中的件。

（3）设计原则

选用的模座板在注射机上的安装需注意：模座板外形尺寸不受注射机拉杆的间距影响；小型模具一般只在定模座板上安装定位圈，大型模具在定、动模座板上均需安装定位圈，注射机的定位孔径与模具的定位圈尺寸需配合良好，如图所示。
大型模具的定位结构

图3.78

图3.79

1. 定模、动模座板的安装孔的位置和孔径与注射机的固定模板上的及移动模板的一系列螺孔相匹配，以便安装，压紧模具，如图所示。

2. 动、定模座板的材料。动、定模座板是分别与注射机的移动工作台面和固定工作台面接触的模板，对刚度与强度要求不高，一般可采用Q235或45钢材料，也不需要对其进行热处理。

3. 图3.78所示的大型模具的定位结构。

合模导向机构的设计

1. 导向机构的作用

(1) 定位作用
模具闭合后，保证动、定模或上、下模位置正确，保证型腔的形状和尺寸精度。导向机构在模具装配过程中也会起到定位作用，即便于模具的装配和调整。

(2) 导向作用
合模时，首先是导向零件接触，引导动、定模或上、下模准确闭合，避免型芯先进入型腔造成成形零件的损坏。

(3) 承受一定的侧向压力
塑料熔体在充模过程中可能产生单向侧向压力，导向机构应能承受一定的侧向压力。
向压力或受成形设备精度低的影响,导柱将承受一定的侧向压力,以保证模具的正常工作。若侧向压力很大或精度要求高时,则不能单靠导柱来承担,需增设锥面定位机构来承担侧向压力。

导柱导向机构的设计

导柱导向机构应用最普遍,图3.81为导柱的导向机构。其主要零件是导柱和导套。导柱既可以设置在动模一侧,也可以设置在定模一侧,应根据模具结构来确定,标准模架的导柱一般设在动模部分,在不妨碍脱模的条件下,导柱通常设置在型芯高出分型芯面较多的一侧。

导柱设计

导柱结构形式

导柱结构形式如图3.81所示。图3.81(a)为带头导柱,除安装部分的台肩外,长度的其余部分直径相同;图3.81(b)、(c)为有肩导柱,除安装部分有台肩外,安装配合部分直径比外伸的}{

· 第3章 单分型面注射模
工作部分直径大，一般与导套外径一致。导柱的导滑部分根据需要可加工出油槽。图所示导柱适用于固定板太薄的场合，即在固定板下面再加垫板固定，但这种结构不常用。关于导柱的尺寸参数可以查阅相关手册。

导柱结构的技术要求

长度
导柱导向部分的长度应比型芯端面的高度高出8~12 mm，以免出现导柱未进入导套，而型芯先进入型腔的情况。

形状
导柱前端应做成锥台形或半球形，以使导柱能顺利的进入导套。由于半球形加工困难，所以导柱前端形式以锥台形为多。

材料
导柱应具有硬而耐磨的表面和坚韧而不易折断的内芯，因此多采用30Cr(经表面渗碳淬火处理)或者40Cr、50Cr钢(经淬火处理)，硬度为40~50 HRC。

导柱固定部分的表面粗糙度值Ra=0.1~0.2 μm，导向部分的表面粗糙度值为Ra=0.4~0.8 μm。

数量及布置
导柱应合理均布在模具分型面的四周，导柱中心至模具边缘应有足够的距离，以保证模具强度(导柱中心到模具边缘距离通常为导柱直径的2倍)。为确保合模时只能按一个方向合模，导柱的布置可采用等直径导柱不对称布置或不等直径导柱对称布置的方式，如图所示。

配合精度
导柱固定端与模板之间一般采用H7/m6或H7/k6的过度配合，导柱的导向部分通常采用H7/f7或H8/f7的间隙配合。

导向孔的设计

导向孔的结构形式
导向孔分无导套和有导套两种。无导套是导向孔直接开设在模板上，这种形式的孔加工简单，适用于生产批量小，精度要求不高的模具。导套的典型结构如图所示。图直导套(9型导套)，结构简单，加工方便，用于简单模具或导套后面没有垫板的场合；图为带头导套(11型导套)，结构较复杂，用于精度较高的场合，这种导套的固定孔便于与导柱的固定孔同时加工，其中图用于两块板固定的场合。

导套结构和技术要求

·

·

注射模标准模架和常用件
图22.13 导套的结构形式

形状
为使导柱顺利进入导套，导套的前端应倒圆角。导向孔最好做成通孔，以利于排出孔内的空气。如果模板较厚，导孔必须做成盲孔时，可在盲孔的侧面打一个小孔排气或在导柱的侧壁磨出排气槽。

材料
可用与导柱相同的材料或铜合金等耐磨材料制造导套，但其硬度应略低于导柱硬度，这样可以减轻磨损，以防止导柱或导套拉毛。

图22.14 导套的固定形式

固定形式及配合精度
直导套用△配合镶入模板，为了增加导套镶入的牢固性，防止开模时导套被拉出来，可以用止动螺钉紧固。图22.14(a)为开缺口紧固，图22.14(b)为开环形槽紧固，图22.14(c)为侧面开孔紧固。带头导套用△配合镶入模板，导套固定部分的粗糙度值为\(R_a = 0.8 \) \(\mu m \)，导向部分粗糙度值为\(R_a = 0.4 \sim 0.8 \) \(\mu m \)。
由于模具的结构不同，选用的导柱和导套的结构也不同。导柱与导套的配用形式要根据模具的结构及生产要求而定，常见的配合形式如图所示。图（a）为带头导柱与模板上导向孔配合；图（b）为带头导柱与带头导套的配合；图（c）为带头导柱与直导套的配合；图（d）为有肩导柱与直导套的配合；图（e）为有肩导柱与带头导套的配合；图（f）为导柱与导套分别固定在两块模板中的配合形式。

图导柱与导套的配用形式

3.85 锥面定位机构的设计

导柱导套对合导向，虽然对中性好，但毕竟由于导柱与导套有配合间隙，导向精度不可能很高。当要求对合精度很高或侧压力很大时，必须采用锥面导向定位的方法。当模具较小时，可以采用带锥面的导柱和导套，如图所示。对于尺寸较大的模具，必须采用动、定模模板各自带锥面的导向定位机构与导柱导套联合使用。对于圆形型腔有两种对合设计方案，如图所示。
图3.87a是型腔模板环抱动模板的结构,成形时,在型腔内塑料的压力下,型腔侧壁向外张开会使对合锥面出现间隙;图3.87b是动模板环抱型腔模板的结构,成形时,对合锥面会贴得更紧,是理想的选择。锥面角度取小值有利于对合定位,但会增大所需的开模阻力,因此锥面的单面斜度一般可在5° ~ 20°范围内选取。

对于方形(或矩形)型腔的锥面对合,可以将型腔模板的锥面与型腔设计成一个整体。另外,型芯一侧的锥面可设计成独立件淬火镶拼到型芯模板上,这样的结构加工简单,也容易对塑件壁厚进行调整(通过对镶件锥面调整),磨损后镶件又便于更换,如图3.88所示。

图3.87 方形型腔锥面对合机构

分型面的作用及其形式?

单型腔和多型腔注射模的优缺点?

主流道和分流道的设计原则是什么?

什么是浇注系统的平衡?在实际生产中,如何调整浇注系统的平衡?

平衡式和非平衡式型腔分布的特点是什么?

浇口位置的选择原则是什么?

计算成形零部件工作尺寸要考虑什么要素?

推出机构有几种形式?各自的特点及适用场合?

为什么要设置推出机构的复位装置?复位装置通常有几种类型?

在注射模中,模具温度调节的作用是什么?

冷却水回路布置的基本原则是什么?

我国关于注射模架有哪几种标准?标准模架的选用要点是什么?

第3章 单分型面注射模
第4章

4.1 双分型面注射模

双分型面注射模概述

许多塑料制品要求外观平整、光滑，不允许有较大的浇口痕迹，因此采用单分型面注射模中介绍的各种浇口形式不能满足制品的要求，这就需要采用一种特殊的浇口——点浇口。图4.1为采用点浇口的塑料制件，其外观要求较高。

另外，对于大型塑料制件，如汽车门的内衬板，其制品面积非常大，因此每模只能成形一个制件，如果采用单分型面注射模，侧浇口的位置无法摆放。如果采用中间直接浇口，侧浇口的位置无法摆放。因此要采用多浇口成形，这也必须借助于点浇口。图4.2为汽车门的内衬板制件及浇注系统。

点浇口是一种非常细小的浇口，又称为针浇口。它在制件表面只留下针尖大的一个痕迹，不会影响制件的外观。由于点浇口的进料平面不在分型面上，而且点浇口为一倒锥形，所以模具必须专门设置一个分型面作为取出浇注系统凝料所用，因此出现了双分型面注射模。

双分型面注射模结构特点

4.1 双分型面注射模

4.1.1 双分型面注射模

图4.1 和图4.2 分别为点浇口的塑料制件和汽车内衬板制件。
4.3

(a) 闭合充模

(b) 开模取出浇注系统凝料和塑料件
推杆固定板和推杆将塑件从型芯上脱出。

双分型面注射模由以下部分组成：
1. 成形零部件，包括型芯(凸模)、中间板；
2. 浇注系统，包括浇口套、中间板；
3. 导向部分，包括导柱、导套、导柱和中间板上的导向孔；
4. 推出装置，包括推杆、推杆固定板和推板；
5. 二次分型部分，包括定距拉板、限位销、销钉、拉杆和限位螺钉；
6. 结构零部件，包括动模座板、垫块、支承板、型芯固定板和定模座板，等。

双分型面注射模与单分型面注射模相比具有如下特点：
1. 采用点浇口的双分型面注射模可以把制品和浇注系统凝料在模内分离，为此应该设计浇注系统凝料的脱出机构，保证将点浇口拉断，还要可靠地将浇注系统凝料从定模板或型腔中脱离。
2. 为保证两个分型面的打开顺序和打开距离，要在模具上增加必要的辅助装置，因此模具结构较复杂。

双分型面注射模工作过程

双分型面注射模有两个分型面，如图所示。开模时，注射机开合模系统带动动模部分后移，模具首先在—分型面分型，中间板(随动模一起后移，主浇道凝料随之拉出。当动模部分移动一定距离后，固定在中间板(上的限位销与定距拉板后端接触，使中间板停止移动，如图所示。动模继续后移，—分型面分型，因塑料件包紧在型芯上，这时浇注系统凝料在浇口处自行拉断，然后在—分型面之间自行脱落或人工取出。动模继续后...
移，当注射机的推杆接触推板时，推出机构开始工作，在推杆的推动下将塑料件从型芯上推出，塑料件在分型面之间自行落下。

双分型面注射模浇注系统

双分型面注射模具使用的浇注系统为点浇口浇注系统。点浇口浇注系统

点浇口又称针点浇口，是一种截面尺寸很小的浇口，因此又称小浇口。点浇口由于截面尺寸小具有许多明显的优点：

1. 由于浇口尺寸小，熔料流经浇口的速度明显增加，这使得熔料受到的剪切速率提高，熔体表观黏度下降。同时，由于高速摩擦生热，熔体温度升高，黏度下降，这使熔体的流动性提高，有利于型腔的充填。

2. 便于控制浇口凝固时间，即保证补料，又防止倒流，保证了产品质量，缩短了成形周期，提高了生产效率。

3. 点浇口浇注系统脱模时，浇口与制品自动分开，这便于实现塑料件生产过程的自动化。

4. 浇口痕迹小，容易修整，制品的外观质量好。

但是，点浇口也有一些不足之处，如对注射压力要求高，模具结构复杂，不适合高黏度和对剪切速率不敏感的塑料熔体等。

点浇口的形式

点浇口的形式有许多种，如图所示。其中图所示为直接式点浇口，直径为的圆锥形小端直接与塑件相连。这种结构加工方便，但模具浇口处的强度差，而且在拉断浇口时容易使塑件表面损伤。图所示为圆锥过渡式点浇口，其圆锥形的小端有一段直径为，长度为浇口与塑件相连，但这种形式的浇口直径不能太小，浇口长度不能太长，否则脱模时浇口凝料会因断裂而堵塞浇口，影响注射的正常进行。图所示为带圆角的圆锥过渡式的点浇口，其结构为圆锥形的小端带有圆角的形式，因此小端的截面积相应增大，塑料冷却减慢，有利于
熔料充满模腔。图为圆锥过渡凸台式的点浇口，其特点为点浇口底部增加了一个小凸台，作用是保证脱模时浇口断裂在凸台小端处，使塑件表面不受损伤，但塑件表面留有凸台，影响表面质量，为了防止这种缺陷，可在设计时让小凸台低于塑件表面，如图所示。

图多点进料点浇口

点浇口按使用位置关系可分成两种，一种是与主流道直接接通，如图中所示的点浇口，这种浇口也称为菱形浇口或橄榄形浇口。由于熔体由注射机喷嘴很快进入型腔，只能用于对温度稳定的物料，如和等。使用较多的是经分流道的多点进料的点浇口，如图所示。

点浇口尺寸

点浇口的尺寸如图所示。

点浇口的直径也可以用经验公式计算

式中——点浇口直径，；——塑件在浇口处的壁厚，；——型腔表面积，。

表列出了不同塑料按塑件平均壁厚确定的点浇口直径尺寸，点浇口直径可查此表选择。

<table>
<thead>
<tr>
<th>壁厚</th>
<th>塑料种类</th>
<th>PS PE</th>
<th>PP</th>
<th>HIPS ABS PMMA</th>
<th>PC POM PPO</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.5</td>
<td>0.5 ~ 0.7</td>
<td>0.6 ~ 0.9</td>
<td>0.8 ~ 1.2</td>
<td>0.8 ~ 1.2</td>
<td>1.0 ~ 1.5</td>
<td>1.2 ~ 1.8</td>
</tr>
<tr>
<td>1.5 ~ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

潜伏浇口

潜伏浇口又称剪切浇口、隧道浇口，它是由点浇口变异而来，这种浇口具备点浇口的一切优点，因而已获得广泛应用。潜伏浇口的分流道位于模具的分型面上，浇口潜入分型面一侧，沿斜向进入型腔，这样在开模时不仅能自动剪断浇口，而且其位置可设在制品的侧面、端面或双分型面注射模浇注系统。
背面等隐蔽处,使制品的外表面无浇口痕迹。图(a)为常见潜伏浇口的形式:图(b)为浇口开设在定模部分的形式;图(c)为浇口开设在动模部分的形状;图(d)为潜伏浇口开设在推杆上部,而进料口在推杆上端的形式;图(e)为圆弧形潜伏式浇口。在潜伏浇口形式中,图(a)、图(b)二种形式应用最多;图(c)的浇口在塑件内部,因此其外观质量好;图(e)用于高精度比较小的制件,其浇口加工比较困难。

图(a)潜伏浇口形式

潜伏浇口尺寸

潜伏浇口一般为圆锥形截面,其尺寸设计可参考点浇口。如图(a)所示,潜伏浇口的引导锥角应取10°~20°,对硬质脆性塑料取大值,反之取小值。潜伏浇口的方向角愈大,愈容易拔出浇口凝料,一般取0.8~2。对硬质脆性塑料取小值。推杆上的进料口宽度为0.8~2,具体数值应根据塑件的尺寸确定。

采用潜伏浇口的模具结构,可将双分型面模具简化成单分型面模具。潜伏浇口由于浇口与型腔相连时有一定角度,形成了切断浇口的刃口,这一刃口在脱模或分型时形成的剪切力可将浇口自动切断,不过,对于较强韧的塑料则不宜采用。

浇注系统的推出机构

单型腔点浇口浇注系统凝料的推出机构

带有活动浇口套的自动推出机构

图(a)为采用点浇口的单型腔注射模,其浇注系统凝料由定模板与定模座板之间的挡板自动脱出。图(b)为闭模注射状态,注射机喷嘴压紧浇口套,浇口套下面的压缩弹簧被压缩,使浇口套的下端与挡板贴紧,保证注射的熔料顺利进入模具型腔。注射完毕后,注射机喷嘴后退,离开浇口套,浇口套在压缩弹簧的作用下弹起,这使得浇口套与主流道凝料分离,如图(c)所示。图(d)为模具打开的情况,在开模力的作用下,模具首先从分模面打开,当定模座板上的台阶孔的台阶与限位螺钉的头部相接触时,定模座板通过限位螺钉带动挡板运动,挡板将点浇口拉断,并使点浇口凝料由定模板中拉出,当点浇口凝料全部拉出后,在重力的作用下自动下落,完成了点浇口浇注系统凝料的自动脱出。
图4.8 带活动浇口套的推出机构

1—定模板；2—限位螺钉；3—挡板；4—限位螺钉；(5)—定模座板；6—压缩弹簧；7—浇口套

浇口套以+的过渡配合固定在定模板上，浇口套与挡板以锥面定位。图(a)为模具闭合时的情况，弹簧被压缩，浇口套的锥面进入挡板中熔融塑料注入模腔。图(b)所示为模具打开时，在弹簧的作用下，定模座板(5)首先移动，由于浇口套内开有凹槽，将主流道凝料从定模座板中脱出。模具继续打开，限位螺钉(4)拉动挡板(3)一起移动，将点浇口拉断，并将浇注系统凝料从浇口套中拉出来，然后凝料靠自重落下。定距拉杆(1)用来限制定模板与定模座板的分型距离，并控制模具分型面的打开。

图4.9 带凹槽浇口套的推出机构

1—定距拉杆；2—定模板；3—弹簧；4—挡板；(5)—定模座板；6—限位螺钉；7—浇口套
在图所示的单型腔点浇口浇注系统中，利用分流道推板自动推出浇注系统凝料。模具打开时，由分型面首先分型，塑件包紧在型芯上，点浇口被拉断。模具继续打开，链条被拉紧后，型腔板停止运动，与分流道推板分开，点浇口凝料被粘留在主流道孔中。当定距拉杆使分流道推板停止运动时，点浇口凝料被从主流道孔中拉出，靠自重坠落。

图所示为利用定模推板推出多型腔浇口浇注系统凝料的结构。图所示为模具闭合、注射状态；图所示为模具打开状态。模具打开时，首先定模座板与定模推板分型，浇注系统凝料随动模部分一起移动，从主流道中拉出。当定模推板的运动受到限位钉的限制后停止运动，型腔板继续运动使得点浇口被拉断，并且凝料由型腔板中脱出，随后浇注系统凝料靠自重自动落下。

图所示是利用设置在点浇口处的拉断杆拉断点浇口凝料的结构。模具打开时，首先由动模部分与型腔板处的分型面脱开，点浇口被拉断。当型腔板的移动受到拉板的限制停止后，分型面打开，由于主流道和分流道凝料的脱模阻力，再加上在定模座板上设置有分流道拉料杆，使点浇口凝料被滞留在定模部分的分流道推板上。当拉杆拉动分流道推板时，使凝料脱出主流道孔和分流道拉料杆，让其依靠自重而坠落。对于聚苯乙烯等一些塑料，其主流道凝料与注射机喷嘴脱离时，经常有拉丝现象，妨碍了点浇口凝料的坠落，可采用增设压缩弹簧和顶销的方法把细丝拉断，如图中的部放大图所示。
图4.11 定模推板推出机构

1—定模座板；2—定模推板；3—限位钉；4—型腔板

图4.12 拉料杆推出机构

1—拉杆；2—型腔板；3—限位螺钉；4—分流道拉料杆；5—分流道推板；6—拉板；7—压缩弹簧；8—顶销

利用分流道斜孔拉断点浇口凝料的推出机构

图4.13所示为利用分流道末端的斜孔将点浇口拉断，并使点浇口凝料推出的结构。模具打开时，由于塑件包紧型芯，点浇口被拉断，同时由于主流道拉料杆的作用使主流道凝料从主流道（）中脱出。模具继续打开，拉料杆的球头被型腔板从主流道凝料中脱出，由于斜孔中凝料的拉力，使分流道凝料从型腔板中被拉出。浇注系统凝料靠自重坠落。图4.14所示为分流道末端斜孔的尺寸。
分流道末端斜孔推出机构

传媒道拉料杆；型腔板；点浇口凝料；定模座板；分流道斜孔；分流道；主流道

分流道斜孔尺寸

潜伏浇口浇注系统凝料推出机构

采用潜伏浇口的模具其推出机构必须分别设置，即在塑件上和在流道凝料上都设计推出装置，在推出过程中，浇口被剪断，塑件与浇注系统凝料被各自的推出机构推出。

根据进料口位置的不同，潜伏浇口可以开设在定模，也可以开设在动模。开设在定模的潜伏浇口一般只能开设在塑件的外侧；开设在动模的潜伏浇口即可以开设在塑件的外侧，也可以开设在塑件内部的型芯或推杆上。

图4.13 设开在定模部分的潜伏浇口浇注系统凝料的推出机构

图4.13所示为潜伏浇口开设在定模部分塑件外侧时的模具结构，模具打开时，主流道拉料杆和分流道推杆将浇注系统凝料拉向动模一侧，塑件包紧在型芯上，潜伏浇口被定模镶块切断。模具推出时，推杆推出塑件，分流道推杆将浇注系统凝料从主流道拉料杆的球头上推出。

图4.14 设开在动模部分的潜伏浇口浇注系统凝料的推出机构

图4.14所示为潜伏浇口开设在动模部分塑件外侧的结构形式。模具打开时，塑件包紧在型芯上，浇注系统凝料全部留在动模一侧。推出时，推杆与分流道推杆分别推出塑件和浇注系统凝料，潜伏浇口被动模板切断。

图4.15 设开在塑件内侧的潜伏浇口浇注系统凝料的推出机构

图4.15所示为开设在塑件内侧的潜伏浇口的结构。图4.15所示的潜伏浇口开设在内侧的推杆上，推出时，推杆将潜伏浇口切断，推杆和分流道推杆分别将塑件和浇注系统凝料推出。图4.15所示的潜伏浇口开设于模具型芯上。
开设于定模的潜伏浇口
- 主流道拉料杆；
- 流道推杆；
- 型芯；
- 推杆；
- 定模镶块

开设于动模的潜伏浇口
- 流道推杆；
- 推杆；
- 型芯；
- 动模板；
- 定模板；
- 定模型芯

开设于塑件内侧的潜伏浇口
- 推杆；
- 流道推杆

双分型面注射模典型结构

双分型面注射模结构分类
双分型面注射模的两个分型面分别用于取出塑件与浇注系统凝料，为此要控制两个分型面的打开顺序和打开距离，这就需要在模具上增加一些特殊结构。根据这些结构的不同，可以将双分型面注射模按结构分类，如摆钩式双分型面注射模、弹簧式双分型面注射模、滑块式双分型面注射模等多种类型。

4.3 双分型面注射模典型结构

4.3.1 双分型面注射模结构分类
摆钩式双分型面注射模是利用摆钩机构控制双分型面注射分型面的打开顺利。图所示为摆钩式双分型面注射模，该模具利用摆钩来控制...
4.3 弹簧式双分型面注射模

弹簧式双分型面注射模是利用弹簧机构控制双分型面注射模分型面的打开顺序。图4.18所示为弹簧式双分型面注射模。如图4.18所示，模具有1—4、5—6两个分型面，1—4分型面作为取出浇注系统凝料之用，5—6分型面的作用是取出制件。图4.18的两次分型机构由弹簧和限位拉杆组成，模具打开时，弹簧的弹力使1—4分型面首先打开，中间板随动模一起后退。双分型面注射模典型结构

![双分型面注射模图](attachment:双分型面注射模图.png)
图3.14

拨板摆钩式机构

图3.15

带滚轮的摆钩式机构

移,主浇道凝料随之被拉出。当动模部分移动一定距离后,限位拉杆
端部的螺母挡住了中间板,使中间板停止移动。动模继续后移,分型面分型。因塑件包紧在型芯上,这时浇注系统凝料在浇口处自动拉断,然后在分型面之间自动脱落或人工取出。动模继续后退,当注射机的推杆接触推板时,推出机构开始工作,推件板在复位杆的推动下将塑件从型芯上推出,塑件在分型面之间自行落下,如图所示。在该模具中,限位拉杆·第4章·双分型面注射模
还兼作定模导柱,此时,它与中间板应按导向机构的要求进行配合导向。

图所示为一种弹簧-滚柱式机构,拉杆插入支座内,弹簧推动滚柱将拉杆卡住。开模时,在拉杆的空行程距离内模具进行第一次分型。模具继续打开,拉杆在滚柱及弹簧的作用下受阻,从而带动模具进行第二次分型。弹簧-滚柱式机构结构简单,适用性强,已成为标准系列化产品,直接安装于模具外侧。
图4.24所示为弹簧摆钩式机构，该机构利用摆钩与拉杆的锁紧力增大开模力，以控制分型面的打开顺序。开模时，摆钩在弹簧的作用下钩住拉杆，因此确保模具进行第一次分型。随后在模具内定距拉杆的作用下，拉杆强行使摆钩转动，拉杆从摆钩中脱出，模具进行第二次分型。弹簧对摆钩的压力可调节螺钉控制。此种机构适用性广，已成为标准系列化产品，直接安装于模具外侧。

图4.25所示为一种弹簧限位钉式机构，该机构在导柱上开有长槽，限位钉的头部伸进槽中起限位作用，如图4.25（a）所示。开模时，在弹簧作用下定模座板与定模板首先分型。当限位钉与长槽的端部接触后动模板与定模板分开，完成二次分型，如图4.25（b）所示。这种分型机构安装在模具之内，结构紧凑。

滑块式双分型面注射模

滑块式双分型面注射模利用滑块的移动控制双分型面注射模分型面的打开顺序。图4.26（a）所示为滑块式的分型机构，模具闭合时滑块在弹簧的作用下伸出模外，被挂钩钩住，分型面被锁紧，如图4.26（b）所示。模具打开时，首先从开模力较小的“—”分型面打开，当打开到一定距离后，拨杆与滑块接触，并压迫滑块后退与挂钩脱开，同时由于限位螺钉的作用，使定模板停止运动，模具继续打开时，分型面“—”“—”被打开，如图4.26（c）所示。
当模具打开到一定距离后，拨杆（#）压迫滑块（’）移动，使滑块（’）与挂钩（&）脱开，在模具内定距限位装置的作用下，使分型面（!）被打开，如图所示。滑块式分型机构，动作可靠，适用范围广。

胶套式双分型面注射模采用胶套与模具孔壁间的摩擦力，控制双分型面注射模分型面的打开顺序，是一种方便，实用的方法，特别适合于中、小型双分型面的注射模。
图所示为采用胶套式二次分型的双分型面注射模。胶套材料可以是橡胶、聚氨酯或尼龙,胶套用螺钉固定在动模板上,螺钉的锥面与胶套的锥孔一致,拧紧螺钉可使胶套的直径向外涨大,其与模板孔的摩擦力增大;反之摩擦力会减小,如图所示。模具闭合时,胶套完全进入定模板的孔内。模具打开时,由于胶套摩擦力的作用,使分型面锁紧,分型面打开,即定模座板与定模板脱开,主流道凝料被拉出,如图所示。当定距拉杆的头部与定模板接触后,强迫定模板与动模板分开,模具分型面打开,取出塑件,如图所示。图胶套式二次分型机构A—定距拉杆;B—胶套;C—螺钉;D—定模板;E—定模座板;F—动模板

滚轮式双分型注射模采用滚轮式二次分型机构如图所示,在图中,模具闭合,锁杆与限制杆使滚轮锁紧。开模时,由于滚轮被锁杆与限制杆夹持,分型面处于锁紧闭合状态,因此定模板与定模座板首先分型,即分型面打开。当限制杆打开移动到消除对滚轮的限制后,分型面打开,如图所示。在图的机构中,为了使闭模后恢复到模具的闭锁状态,必须确保分型面首先闭合,为此设置了滑块装置。合模开始时,由于滑块在弹簧作用下,挡住限制杆,以便于锁杆容易地进入闭锁位置,分型面闭合。闭合的同时,锁杆推动滑块移动,消除阻挡限制杆的状态,限制杆与锁杆夹持滚轮,分型面闭合。
图

滚轮式二次分型机构

—锁杆;
—限制杆;
—滚轮;
—定模板;
—弹簧;
—滑块;
—定模座板

单分型面注射模与双分型面注射模各采用哪些浇口形式?各有何特点?举出四种不同浇口形式在塑件上的应用。

单分型面注射模与双分型面注射模在结构组成上有哪些部分相同?哪些部分不相同?并举例说明。

双分型面注射模的模架有几种形式?各有何特点?

点浇口适于哪类塑料原料的注射成形?

点浇口分流道位置与潜伏式浇口分流道位置有何不同?

双分型面注射模的两个分型面在开模时的打开距离如何确定?开模时如何控制?

本章中介绍了哪些双分型面注射模点浇口浇注系统凝料的推出机构?

双分型面注射模采用的导向装置与单分型面注射模有何不同?

叙述双分型面注射模的工作过程?

双分型面注射模具有两个分型面,其各自的作用是什么?双分型面注射模具应使用什么浇口形式?

习题

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

4.29

1— 2— 3— 4— 5— 6— 7—
5.1 其他类型注射模

一般的塑料注射模具都具有主流道、分流道，这是为了得到制品而必须增加的部分。由主流道、分流道构成的浇注系统，在注射成形时会消耗注射压力，使型腔内的压力较低。而且，浇注系统凝料，在一次注射成形的熔料中占有很大的比例，这些凝料再回收利用时，其性能下降，不能生产高品质的制品，造成了很大浪费。为了解决这一问题，人们创造了热流道技术。热流道浇注系统与普通浇注系统的区别在于：在整个生产过程中浇注系统内的塑料始终处于熔融状态。热流道浇注系统也称无流道浇注系统。

（1）热流道浇注系统具有如下优点：
1. 由于热流道内的熔体温度与注射机喷嘴温度基本相同，因而流道内的压力损耗小。在使用相同的注射压力下，型腔内的压力较一般注射为高，熔体的流动性好，密度容易均匀，因此成形塑件的变形程度大为减小。
2. 浇注系统中无凝料，实现了无废料加工，提高了材料的有效利用率。同时省去了去除浇口的工序，可节省人力、物力，降低了生产成本。
3. 热流道均为自动切断浇口，可以提高自动化程度，提高生产效率。热流道元件多为标准件，可以直接选用，减少了模具加工制造周期。

但是热流道系统也存在一些问题，如热流道使定模部分温度偏高；热流道板受热膨胀，产生热应力等，在模具设计时必须加以注意。

（2）采用热流道浇注系统成形塑件时，要求塑料的性能能够适合此种成形方法，如：
1. 塑料的熔融温度范围宽，黏度变化小，热稳定性好。即在较低的温度下有较好的流动性，不固化；在较高的温度下，不流涎，不分解。能较容易进行温度控制。
2. 熔体黏度对压力敏感，不施加注射压力时熔体不流动，但施加较低的注射压力熔体就会流动。在低温、低压下也能有效地控制流动。
3. 固化温度和热变形温度较高，塑件在比较高的温度下即可固化，缩短了成形周期。
4. 比热容小，导热性能好，既能快速冷凝，又能快速熔融。熔体的热量能快速传给模具而冷却固化，提高生产效率。

目前在热流道注射模中应用最多的塑料有：聚乙烯、聚丙烯、聚苯乙烯、聚丙烯腈、聚氯乙烯、ABS等。
5.1.1 热流道注射模结构特点

1. 绝热流道注射模

绝热流道注射模的流道截面相当粗大，这样，就可以利用塑料比金属导热性差的特性，让靠近流道内壁的塑料冷凝成一个完全或半熔化的固化层，起到绝热作用，而流道中心部位的塑料在连续注射时仍然保持熔融状态，熔融的塑料通过流道的中心部分顺利充填型腔。由于不对流道进行辅助加热，其中的融料容易固化，要求注射成形周期短。

2. 井坑式喷嘴

井坑式喷嘴又称绝热主流道，它是一种结构最简单的适用于单型腔的绝热流道。图5.1a所示为井坑式喷嘴，它在注射机喷嘴与模具入口之间装有一个主流道杯，杯外采用空气隙绝热，杯内有截面较大的储料井，其容积约取塑件体积的1/3~1/2。在注射过程中，与井壁接触的熔体很快固化而形成一个绝热层，使位于中心部位的熔体保持良好的流动状态，在注射压力的作用下，熔体通过点浇口充填型腔。采用井坑式喷嘴注射成形时，一般注射成形周期不大于20s。主流道杯的主要尺寸如图5.1b所示，其具体尺寸可查表5-1。

![井坑式喷嘴示意图](image)

<table>
<thead>
<tr>
<th>塑件质量/g</th>
<th>成形周期/s</th>
<th>d/mm</th>
<th>R/mm</th>
<th>L/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ~ 6</td>
<td>6 ~ 7.5</td>
<td>0.8 ~ 1.0</td>
<td>3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>6 ~ 15</td>
<td>9 ~ 10</td>
<td>1.0 ~ 1.2</td>
<td>4.0</td>
<td>0.6</td>
</tr>
<tr>
<td>15 ~ 40</td>
<td>12 ~ 15</td>
<td>1.2 ~ 1.6</td>
<td>4.5</td>
<td>0.7</td>
</tr>
<tr>
<td>40 ~ 150</td>
<td>20 ~ 30</td>
<td>1.5 ~ 2.5</td>
<td>5.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>
注射机的喷嘴工作时伸进主流道杯中,其长度由杯口的凹球坑半经决定,二者应很好贴合。储料井直径不能太大,要防止熔体反压使喷嘴后退产生漏料。图所示是一种浮动式主流道杯,弹簧使主流道杯压在注射机喷嘴上,主流道杯又可随之后退,保证储料井中塑料得到喷嘴的供热,也使主流杯与定模板间产生空气间隙,防止主流杯中的热量外流。图所示是一种注射机喷嘴伸入主流道杯的形式,增加了对主流道杯传导热量。注射机喷嘴伸入主流道部分可以做成倒锥的形式,如图所示。这样在注射结束后,可以使主流道杯中的凝料随注射机喷嘴一起拉出模外,便于清理流道。图井坑式喷嘴形式—定模板;—定位圈;—主流道杯;—弹簧;—注射机喷嘴。加热流道注射模又简称为热流道注射模。加热流道是指设置加热器使浇注系统内塑料保持熔融状态,以保证注射成形正常进行。由于能有效地维持流道温度恒定,使流道中的压力能良。
5.3 多型腔绝热流道

1—浇口套; 2—热流道板; 3—分流道; 4—固化绝热层; 5—分流道板; 6—直接浇口衬套; 7—定模板; 8—型芯; 9—加热圈; 10—冷却水管

好传递，压力损失小，这样要可适当降低注射温度和压力，减少了塑料制品内残余应力，与绝热流道相比，它的适用性更广。同时，加热流道不像绝热流道使用前、后必须清理流道凝料。加热流道模具在生产前只要把浇注系统加热到规定的温度，分流道中的凝料就会熔融。但是，由于加热流道模具同时具有加热、测温、绝热和冷却等装置，模具结构更复杂，模具厚度增加，并且成本高。加热流道模具对加热温度控制精度要求高。

5.4 单型腔加热流道

单型腔加热流道采用延伸式喷嘴结构，它是将普通注射机喷嘴加长后与模具上浇口部位直接接触的一种喷嘴，喷嘴自身装有加热器，型腔采用点浇口进料。喷嘴与模具间要采取有效的绝热措施，防止将喷嘴的热量传给模具。

图所示为各种延伸式喷嘴。喷嘴上带有电加热圈和温度测量、控制装置，一般喷嘴温度要高于料筒温度。应尽量减少喷嘴与模具的接触时间和接触面积，通常注射保压后喷嘴应脱离模具。也可以采用气隙或塑料层减小接触面积。一般喷嘴应为直径的点浇口。图所示为球头喷嘴伸入模具浇口套内的结构形式，喷嘴采用凸肩定位并承受大部分压力。为增大绝热效果，在喷嘴与浇口套之间增设气隙。图所示为锥形喷嘴，喷嘴前端具有较大锥度，并带有气隙槽和承压台肩。其浇口套上开设气隙绝热，还可以在浇口套外侧引入冷却水加强绝热效果。图所示是一种成形喷嘴，其喷嘴的前端是型腔的一部分，此部分应尽可能小，以加快塑件冷却，防止在塑件留下较大的痕迹。另外喷嘴要准确定位，以控制塑件成形部分的厚度尺寸。同时喷嘴前端与模具孔的配合必须考虑热膨胀，以防止出现飞边。图所示为绝热喷嘴，它以球形的喷嘴头配以碗形的塑料绝热层，绝热层的厚度从中心的，增加到外侧的，φ 0.8 ~ 1.2 mm

5.4a 5 ℃ ~ 20 ℃ 5.4b 5.4c 5.4d 0.4 ~ 0.5 mm 1.2 ~ 1.5 mm
多型腔加热流道系统由主流道、热流道板和喷嘴三部分组成，如图所示。

热流道板是多腔加热流道的核心部分，热流道板上设有分流道和喷嘴，热流道板上接主流道，下接型腔浇口，本身带有加热器。

常用的热流道板为一平板，其外形轮廓有一字形、物形、十字形等，如图所示。热流道板分为内加热式和外加热式。内加热式其加热器在分流道之内；外加热式其加热器在分流道之外，图所示的热流道板均采用外加热。

热流道板上的分流道截面多为圆形，其直径约为1.5～1.8，分流道内壁应光滑，转角处应圆滑过渡防止塑料熔体滞留。分流道端孔需采用孔径较大的细牙管螺纹管塞和密封垫圈堵住，以免塑料熔体泄漏。热流道板采用管式加热器加热。
热流道板安装在定模座板与定模板之间，为防止热量散失，应采用隔热方式使热流道板与
多腔加热流道—浇口套；热流道板—定模座板；—垫块；—滑动压环；—喷嘴套；—支撑螺钉；堵头；止转销；加热器；侧板；浇口杯；定模板；动模板
模具的基体部分绝热，目前常采用空气间隙或隔热石棉垫板绝热，空气间隙通常取为
热流道板—加热器孔；分流道；喷嘴孔
由于热流道板悬架在定模部分中，主流道和多个浇口中高压熔体的作用力和板的热变形，要求热流道板有足够的强度和刚度，因此热流道板应选用中碳钢或中碳合金钢制造，也可以采用高强度铜合金。热流道板应有足够的厚度和强固的支撑，支撑螺钉或垫块也应有足够的刚度，为有利于绝热，其支承作用面应尽量小。

热流道板加热功率计算
将热流道板加热至设定温度所需电功率可按如下公式计算

\[P = \frac{m c (\theta - \theta_0)}{36 \times 10^5 \eta t} \]

式中
\[m \] ——加热器功率，kW
\[c \] ——热流道板质量，kg
\[\theta \] ——热流道板材料的比热，钢材约为485 J/kg·℃
\[\theta_0 \] ——室温，℃
\[\eta \] ——加热器加热效率，常取0.5~0.7
\[t \] ——热流道板升至设定温度所需时间，h
内热式热流道板

热流道板上的流道均采用内加热方式称为内热式热流道板，如图所示。加热管设置于流道中心，流道中塑料熔体包围着加热管，这样熔体本身起到了绝热作用，提高了加热效率，降低了热流道板的温度，减少了热流道板的膨胀。

图内热式热流道板

1—加热芯棒 2—分流道加热管 3—热流道板 4—内热式喷嘴 5—加热芯棒
6—定模座板 7—定位圈 8—浇口套 9—加热芯棒 10—主流道加热管
11—型芯 12—喷嘴套 13—型腔板

采用内热式热流道板，其加热管四周温度高，熔体流速快时有产生分解的可能，因此要严格控制加热管的温度。另外沿流道径向越向外，熔体温度和流速越低，甚至形成固化层，所以加热管与流道壁之间的距离应为3~5 mm，不能过大。采用内热式热流道板时，一般让加热管温度控制得较低，用高压注射成形。

热流道喷嘴

热流道喷嘴是连接高温热流道板和冷却固化塑件型腔的节流通道。为保持喷嘴内塑料的熔融状态，喷嘴可采用外部或内部加热。同时还要采取有效的绝热措施，防止热量外流。要避免喷嘴内温度过低产生冷料堵塞喷嘴，也要防止塑料过热而流涎、拉丝，甚至热分解。在喷嘴设计时，要考虑温差产生的热膨胀，特别是大型模具，要保证喷嘴口与喷嘴套以及定模型腔上浇口孔的对准。

常见的喷嘴形式有:

1. 直接接触式喷嘴
 图所示为直接接触式喷嘴，喷嘴采用外加热，其内部通道粗大，适合于用热敏性塑料成形的小型薄壁精密制品。

2. 绝热式喷嘴
 绝热式喷嘴如图所示，绝热式喷嘴的热量来源于热流道板中被加热的熔体和流道板的传热。喷嘴采用塑料隔热层与模具型腔板绝热，喷嘴常用导热性好的铍铜合金制造。
直接接触式喷嘴

定模座板; 垫块; 止转销; 堵头; 螺塞; 热流道板; 侧支板;

绝热式喷嘴

定模座板; 定距螺钉; 螺塞; 密封钢球; 支承螺钉; 加热器孔; 热流道板; 弹簧圈; 喷嘴; 喷嘴套;

内热式喷嘴

内热式喷嘴是在喷嘴的内部设置加热棒,对喷嘴内的塑料进行加热,如图所示。加热棒安装于分流梭中央,其加热功率可由电压调节。分流梭四周的熔体通道间隙一般为0.1~0.3 mm。间隙过小,使流动阻力大,散热快;间隙过大,则熔体径向温差大,并且结构尺寸也大。

阀式热流道喷嘴

用一根可控制启闭的阀芯置于喷嘴中,使浇口成为阀门,在注射保压时打开,在冷却阶段关闭。这种喷嘴可防止熔体拉丝和流涎,特别适用于低黏度塑料。阀式热流道喷嘴按阀启闭的驱动方式分为两类:一类是靠熔体压力驱动;另一类是靠油缸液压力驱动。图所示是一种靠熔体压力驱动的弹簧针阀式热流道喷嘴。在注射和保压阶段,注射压力传递至喷嘴浇口处,浇口处的针阀芯克服了弹簧的压力而打开浇口,塑料熔体进入型腔。保压结束后熔体的压力下降,这时弹簧推动针阀芯使浇口闭合,型腔内的塑料不能倒流,喷嘴内的熔料也不会流涎。

弹簧针阀式喷嘴结构紧凑,使用方便,其弹簧力应可以调节,针阀芯导向部分的间隙非常重要,要使其在高温下滑动而不咬合,又不能间隙过大使熔体泄漏。目前该类喷嘴已有系列化产品。

热管式热流道

热管是一种超级导热元件,它是综合液体蒸发与冷凝原理和毛细管现象设计的,通常直径1~2 mm,长0.1~0.3 mm,其导热能力是同样直径铜棒的几百倍至上千倍,如图所示。它是铜管制成的密封件,在真空状态下加入传热介质,热端蒸发段的传热介质在较高温度下沸
图 内热式喷嘴

—定模板;
—喷嘴;
—锥形尖;
—分流梭;
—加热棒;
—绝缘层;
—冷却水孔

图 弹簧针阀式喷嘴

—定模座板;
—热流道板;
—压环;
—弹簧;
—活塞杆;
—定位圈;
—浇口套;
—加热圈;
—针阀芯;
—隔热层;
—加热圈;
—喷嘴体;
—喷嘴头;
—定模板;
—推件板;
—型芯

热管的工作原理

—蒸发段;
—绝热段;
—凝聚段
腾、蒸发,经绝热段向冷的凝聚段流动,放出热量后又凝结成液态。管中细金属丝结构的芯套,起着毛细管的抽吸作用,将传热介质送回蒸发段重新循环,这一过程继续进行到热管两端温度平衡。常用热管的有效工作温度范围 -10 °C ~ 250 °C

热管用于热流道模具的喷嘴和流道板加热,可将电加热圈或电热棒加热处的热量迅速导向冷端使温度均化。若喷嘴的一端由于结构原因无法加热,利用热管可以使喷嘴的轴向温差控制在2 ℃之内。

常用的热流道浇注系统

图 套管热流道注射模

图 5.12

5.1.2

1. 5.13
靠热传导获得，因此，喷嘴应选用导热性好的铍铜合金材料。在注射时，有一部分熔融塑料流入定模板与喷嘴之间，形成一层隔热层，以保证喷嘴处有足够的温度。热流道板由定心套及定位销定位，用压紧螺钉压紧，并可做适当的调节。隔热板用于定模板与热流道板之间的隔热，以保证各自的适当温度。

图5.1套管热流道注射模—动模座板；—型芯；—型芯固定板；—推件板；—导柱；—定模板；—定心套；—定位销；—隔热板；—垫板；电加热圈；—热流道板；—浇口套；—定模座板；—压紧螺钉；—喷嘴；—密封圈

塑料杯热流道注射模一次性塑料杯生产批量大，要求有高的生产率，所以采用热流道注射模。图5.11为采用延伸式喷嘴的热流道注射模，延伸喷嘴的外侧有电加热圈为其提供热量，喷嘴与浇口套接触的肩部用聚四氟乙烯的隔热密封圈进行隔热。首次注射时，熔融塑料进入延伸喷嘴与浇口套之间的间隙，起到隔热保温作用。浇口套的外侧为一冷却套，冷却套上可由冷却水孔通入冷却水进行冷却，密封圈为冷却水套的密封。

端盖热流道注射模图5.12所示是生产塑料端盖的注射模，为保持端盖的外表美观，不允许有明显的浇口痕。
图中的模具采用弹簧针阀式热流道系统。主流道浇口套采用电加热圈加热，热流道板采用外加热，喷嘴套利用电加热圈加热。整个热流道系统采用隔热外壳和隔热垫圈与模具的其他部分隔离，防止热量流失。注射时，施加于熔融塑料上的注射压力压迫针阀，针阀推动针阀顶杆使弹簧压缩，喷嘴打开，熔料进入模具型腔。保压结束后，施加于熔融塑料上的注射压力消失，弹簧推动针阀顶杆使针阀将喷嘴封闭，防止了熔料的流涎，拉丝现象。

电池壳热流道注射模

电池壳热流道注射模一模两腔，如图所示，其热流道板利用电加热棒进行外加热，喷嘴采用铍铜合金材料，无外加热装置，利用喷嘴与浇口套之间的间隙中的塑料层绝热。热流道板上的热电耦孔为安装热电耦测头之用，用以控制热流道板的温度。

洗衣机盖板热流道注射模

洗衣机盖板要求外表面光滑美观，无浇口和推杆痕迹，因此塑件在模具中要倒置，如图所示。其塑件的推出要在定模一侧，因此，定模一侧尺寸较大。如采用普通的直浇口，浇注系统凝料很多，而且取出不方便，因此采用热流道，浇口套的外侧带有多组电加热圈对浇口套进行加热，浇口套与模具模板间采用空气间隙绝热。由于浇口套过于细长，中间位置增加卡环，用以给浇口套定位。模具注射时，熔料经浇口套进入模腔。注射结束后模具打开，当打开到一定距离后拉板推动推件板推出制件，同时通过推件板上用螺钉连接的复位杆拉动推杆固定板运动，使推杆推出制件。

周转箱热流道注射模

图所示的周转箱热流道注射，其周转箱的尺寸较大，采用个浇口进料。浇口喷嘴采用电加热圈进行加热，热流道板采用电加热棒进行外加热。模具四侧滑块由根斜导柱和两组斜置油缸驱动，用来实现侧抽动作。滑块由定模板和动模板的双重斜楔锁紧。
图 5.15 端盖热流道注射模
1—针阀; 2—针阀顶杆; 3—隔热圈; 4—喷嘴头; 5—隔热外壳; 6—电加热圈; 7—喷嘴套; 8—热流道板; 9—盖; 10—弹簧; 11—浇口套; 12—电加热圈; 13—隔热外壳; 14—定模座板

图 5.16 电池壳热流道注射模
1—浇口套; 2—热流道板; 3—固定螺钉; 4—隔热套; 5—喷嘴; 6—密封圈; 7—浇口套; 8—定模板; 9—热电耦孔; 10—支撑柱; 11—定位圈

图 5.17 洗衣机盖板热流道注射模
1—垫块; 2—定模座板; 3—复位杆; 4—导柱; 5—推杆固定板; 6—推杆; 7—支座; 8—卡环; 9—定模板; 10—型芯; 11—推件板; 12—拉板; 13—动模板; 14—型芯镶件
复杂推出机构注射模

二次推出机构注射模

有些塑件因形状特殊或生产自动化的需要，在一次推出后塑件难以保证从型腔中脱出或不能自动坠落，这时必须增加一次推出动作，这称为二次推出。为实现二次推出而设置的机构称为二次推出机构。有时为避免使塑件受推出力过大，产生变形或破裂，也采用二次推出分散推出。
出力，以保证塑件质量。二次推出机构可分为单推板二次推出机构和双推板二次推出机构。

单推板二次推出机构是指在推出机构中设置了一组推板和推杆固定板，而另一次推出靠一些特殊零件的运动来实现。常见的形式有：

弹簧式二次推出机构
弹簧式二次推出机构通常是利用压缩弹簧的弹力进行第一次推出，然后再由推板推动推杆进行第二次推出。

图中所示的塑件，其边缘有一个倒锥形的侧凹，如果直接采用推杆推出，塑件将无法推出，采用图所示的弹簧式二次推出机构，就能够顺利地推出塑件。模具闭合时，如图所示，模具注射成形后打开，压缩弹簧弹起，使动模板推出，将塑件脱离型芯的约束，使塑件边缘的倒锥部分脱离型芯，如图所示，完成第一次推出。模具完全打开后，推板推动推杆进行第二次推出，将塑件从动模板上推落，如图所示。

摆块式二次推出机构
摆块式二次推出机构是利用摆块的摆动完成二次推出动作。

图所示为摆块式二次推出机构，摆块放入推板中，如图所示。塑件包紧在型芯上，如果直接用推杆去推塑件的边缘，则塑件会变形或损坏。采用二次推出机构后，当注射机推出时，推杆、推动着动模板移动距离，使塑件脱离型芯，完成第一次推出，如图所示。此时压杆与支承板接触，继续顶出时，推杆迫使摆块摆动，推杆做超前于动模板的移动，将塑件从型腔中推出，如图所示。
摆块式二次推出机构

斜楔滑块式二次推出机构是利用模具上的斜楔迫使滑块做水平运动，完成二次推出动作。如图所示，在推板上装有滑块，弹簧推动滑块在外极限位置，斜楔固定在支承板上。开模后，注射机推出装置推动推板移动，在推杆作用下推动凹模型腔板移动将塑件由型芯上推出，但仍留在凹模型腔板内，如图所示。推板再继续推出时中心推杆将塑件从凹模型腔板中推出，完成二次推出，如图所示。

滚珠式二次推出机构

滚珠式二次推出机构是利用滚珠所处的位置控制二次推出动作。图所示为滚珠式二次推出机构，它是采用复位杆与滚珠配合完成二次推出过程。如图所示，模具闭合时，滚珠将复位杆和活动衬套卡住。推出时，由于装在活动衬套内孔中的滚珠的作用，推杆及动模板同时推动塑件，使塑件脱出型芯，完成第一
斜楔滑块式二次推出机构

图示所示。当滚珠移动一定距离进入衬套的凹槽后，动模板停止移动，推杆继续推出制品，完成二次推出，将塑件从模具中推出，如图所示。复位杆可兼作导向和精确复位。

滑块式二次推出机构利用斜导柱驱动滑块移动完成二次推出过程。如图所示，在推杆固定板上装有滑块，斜导柱固定在支承板内，型芯上设置了带有弹簧自动复位的中心推杆。模具推出时，推杆推动动模型腔板，使塑件与型芯脱离，完成第一次推出，如图所示。在推杆固定板推出时，由于斜导柱的作用使滑块在推杆固定板上运动，当滑块的斜面与中心推杆的尾端接触后，压迫中心推杆向前，进行第二次推出，将塑件从动模型腔板上推出，如图所示。

（b）液（气）压缸二次推出机构

采用液（气）压缸进行二次推出适合于推出力比较大的大中型塑件。
滚珠式二次推出机构

1—复位杆; 2—推杆; 3—橡胶垫; 4—衬套; 5—活动衬套; 6—止动螺钉; 7—滚珠; 8—动模板; 9—型芯
图 5.24a 滑块式二次推出机构

图 5.24b 双推板二次推出机构

图 5.24c 弹顶式二次推出机构

图 5.24d 摆钩式二次推出机构

图 5.25a 另一种摆钩式二次推出机构

图 5.25b 另一种摆钩式二次推出机构

图 5.25c 另一种摆钩式二次推出机构

图 5.25d 另一种摆钩式二次推出机构

双推板二次推出机构

双推板二次推出机构是在注射模具中设置两组推板，它们分别带动一组推出零件实现塑件的二次推出。

弹顶式二次推出机构

弹顶式二次推出机构如图 5.24c 所示，由于塑件包紧在一组小型芯上，一次推出其推出力过大，所以采用二次推出机构。推出时，注射机推出装置推动推板，带动推杆使动模型腔板移动，将塑件从型芯上脱出，完成一次推出，如图 5.24d 所示。同时，推板带动限位螺钉，使弹簧被压缩，并促使推板及推杆同时移动。当弹簧被压缩到一定程度时，其弹力推动推板及推杆，从动模型腔板上将塑件推出，完成二次推出，如图 5.24e 所示。

摆钩式二次推出机构

摆钩式二次推出机构如图 5.24d 所示。推出时，注射机推出装置推动推板，由于摆钩的作用，推板也同时被带动，从而使推杆推动动模型腔板与推杆同时移动，使塑件脱离型芯，完成第一次推出，如图 5.24g 所示。此时，摆钩被打开，推板停止移动，而推板继续移动，推动推杆将塑件顶出动模型腔板，完成第二次推出过程，如图 5.24h 所示。
图 5.24
1—推杆；2—型芯；3—复位杆；4—动模型腔板；5—液压缸

图 5.25
1—推杆；2—型芯；3—复位杆；4—动模型腔板；5—限位螺钉；6—推板；7—推板；8—弹簧
摆钩式二次推出机构

- 型芯
- 推杆
- 动模型腔板
- 限位螺钉
- 摆钩
- 推板
- 推杆

复杂推出机构注射模
推板、推杆及推件板停止运动，而推杆则继续推动塑件，使其从推件板中脱出，完成第二次推出过程，如图所示。

图—摆钩式二次推出机构
1—推件板；2—推杆；3—型芯；4—推杆；5—顶板；6—推板；7—摆钩；8—支承板

图—摆杆式二次推出机构
摆杆用转轴固定在和支承板固定在一起的支块上，图为刚开模的状态。推出时，注射机顶杆推动推板，由于定距块的作用，使推杆和推杆一起动作将塑件从型芯上推出，直到摆杆与推板相接触为止，完成第一次推出，如图所示。继续推出时，推杆继续推动动模型腔板，而摆杆在推板的作用下转动，推动推板快速运动，带动推杆将塑件从动模型腔板中脱出，完成第二次推出，如图所示。
在实际生产中，有些塑件因其结构形状特殊，开模后即有可能留在动模一侧，也有可能留在定模一侧，或者塑件就滞留在定模一侧，这样使塑件的推出困难。为此，需采用定、动模双向顺序推出机构。即在定模部分增加一个分型面，在开模时确保该分型面首行定距打开，让塑件先从定模部分脱出，留在动模部分。然后，模具分型，动模部分的推出机构推出塑件。

弹簧式顺序推出机构

弹簧式顺序推出机构是采用在定模一侧设置弹簧的方法保证定、动模双向顺序推出，如图所示。

5.2.2

1.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

(a)

(b)

(c)
所示。开模时，由于弹簧的作用，定模推板将塑件从型芯上脱出，并使塑件停留在动模一侧。模具继续打开，限位板拉住圆柱销后，使动模型腔板与定模推板分型，最后推杆将塑件从动模型腔板中推出。

图所示为弹簧式顺序推出机构—推杆；导柱；型芯；—动模型腔板；—定模推板；—密封垫；—弹簧；—圆柱销；—限位板。

摆钩式顺序推出机构
图所示为利用摆钩控制定、动模双向顺序推出。开模时，斜楔作用于拉钩，迫使推件板与定模板首先分型，塑件从定模型芯上脱出，使塑件留在动模一侧。模具继续打开，当斜楔脱离拉钩后，拉钩由于弹簧的作用脱离开推件板，镶块与推件板分型，然后注射机推出装置推动推杆将塑件与镶块一同推出，在模外分开镶块，取出塑件，如图所示。

滚轮、挂钩式顺序推出机构
如图所示为滚轮、挂钩式顺利推出机构。由于型芯在定模一侧，塑件对型芯的包紧力促使塑件留在定模，因此必须在定模部分设置推出机构。开模时，塞紧块对挂钩起塞紧作用，所以挂钩使动模型腔板与推件板锁紧，推件板与定模板分型，塑件从型芯上脱出，由于限位拉杆的作用，当推件板与定模板分型到一定距离后停止。这时，挂钩已与塞紧块脱开，在滚轮的作用下，挂钩转动，与锁块脱离，此时动模型腔板与推件板分型，推杆将塑件推出，如图所示。

滑块式顺序推出机构
图所示为滑块式定、动模双向顺序推出机构，拉钩固定在动模板上，限位压块固定在定模座板上，如图所示。开模时，动模部分通过拉钩钩住滑块，因此，定模座板与定模垫板首先分型，塑件从定模部分脱出。分开一定距离后，滑块受到限位压块斜面的作用向模内移动而脱离拉钩，由于定距螺钉的作用，定模板不再继续移动，滑块也由于定距销钉的作用不再继续向模内滑动，此时定模部分分型结束，如图所示。动模部分继续移动时，主分型面打开，塑件留在动模部分由推出机构推出。闭模时，滑块在弹簧的作用下复位，使拉钩钩住滑块，恢复锁紧位置。
带螺纹塑件的脱模

塑件上的螺纹分外螺纹和内螺纹两种。外螺纹成形比较容易,通常是由滑块来成形,成形后打开滑块,即可取出塑件,如图1所示。也可以采用活动型环来成形外螺纹,成形后塑件与活动型环一起由模具内取出,然后在模外旋转脱下活动型环,得到带外螺纹的塑件。

塑件上的内螺纹成形时,受到模具空间的限制,因此其脱模方式较为复杂,常见的形式有:

1. 活动型芯模外脱螺纹
 成形螺纹塑件时,先将活动型芯放入模内,成形后将塑件与活动型芯一起从模内取出,再旋转脱出活动型芯,得到带内螺纹的塑件。这种脱模方式结构简单,但生产效率低,操作工人劳动强度大,只适用于小批量生产。

2. 强制脱螺纹
 图2为强制脱螺纹机构,带有内螺纹的塑件成形后包紧在螺纹型芯上,推杆在注射成型后推出塑件,塑件与螺纹型芯一起被推杆推出模具,然后在模外旋转脱下活动型芯,得到带内螺纹的塑件。
图 5.31 滚轮、挂钩式顺序推出机构
1—推杆; 2—小型芯; 3—动模板; 4—动模型腔板; 5—型芯; 6—推件板; 7—定模板; 8—塞紧块; 9—滚轮; 10—限位拉杆; 11—挂钩; 12—锁块

图 5.32 滑块式顺序推出机构
1—动模板; 2—拉钩; 3—滑块; 4—定距销钉; 5—限位压块; 6—定模座板; 7—弹簧; 8—定距螺钉; 9—定模板; 10—定模垫板

射机推出装置的作用下推动推杆板，强制将塑件从螺纹型芯上脱出。采用强制螺纹的方法受到一定条件的限制：首先，塑件应是聚烯烃类柔性塑料；其次，螺纹应是半圆形粗牙螺纹，
图 5.33 滑块成形外螺纹

1—推杆; 2—推件板; 3—定模板; 4—斜导柱; 5—滑块; 6—型芯

图 5.34 强制脱螺纹结构

1—螺纹型芯; 2—推件板; 3—推杆

螺纹高度小于螺纹外径的，再有，塑料件必须有足够的厚度吸收弹性变形能。

内侧抽脱螺纹

对于一些要求不高的带内螺纹的塑料件，可以将内螺纹在圆周上分为三个局部段，对应在模具上制成三个内侧抽滑块成形，如图所示。脱模时，推板推动推杆使推件板和螺纹滑块上移，三个螺纹滑块沿主型芯上的滑道向内移动，使内螺纹部分脱出。

模内旋转脱螺纹

许多带内螺纹的塑料件要采用模内旋转的方式脱出。使用旋转方式脱螺纹，塑料件与螺纹型芯之间要有周向的相对转动和轴向的相对移动，因此，螺纹塑料件必须有止转的结构，如图所示。图是在塑料件外表面设置凸楞止转；图是在塑料件内表面设置凹槽止转；图是在塑料件端面上设置凸起止转。

常用的模内旋转脱螺纹机构有：

1. 手动旋转脱螺纹

图所示为手动旋转脱螺纹机构。模具打开后，旋转手动轴通过锥齿轮的传动，使螺纹型芯按旋出方向旋转，利用弹簧在螺纹型芯脱出过程中始终顶动活动型芯，使活动型芯上的小型芯始终与塑料件相连，防止塑料件随螺纹型芯转动，从而使塑料件顺利脱出。

2. 齿轮、齿条脱螺纹

齿轮、齿条脱螺纹机构是利用模具打开的直线运动带动齿条移动，通过齿轮、齿条将直线复杂推出机构注射模
螺纹塑件的止转结构

运动转变为型芯的旋转运动，使螺纹塑件脱出。图所示为齿轮、齿条脱螺纹模具结构，开模时，齿条移动，带动齿轮转动，通过轴及齿轮的传动，使螺纹型芯按旋出方向旋转，拉料杆随之转动，从而使塑件与浇注系统凝料同时脱出。塑件与浇注系统凝料同步轴向运动，依靠浇注系统凝料防止塑件旋转，使螺纹塑件脱出。

5. 36

(a) (b) (c)
螺纹套

向脱出方向移动，螺纹型芯脱出塑件后，由推杆推动推板及推管将塑件推出。

螺纹型芯与螺纹套的螺距相等，螺纹方向相同。

图5.39 螺旋杆、链轮脱螺纹机构

—链轮；
—螺旋套；
—推板；
—推管；
—螺旋杆；
—定模座板；
—推杆。

图5.40 液压缸脱螺纹机构

采用液压缸（气缸）做动力源可以方便地完成模内脱螺纹工作，而且脱模位置不受模具打开位置的限制。图5.40为液压缸脱螺纹机构，开模后，液压缸的活塞杆推动齿条。
5.3 热固性塑料注射成形工艺要点

1. 热固性塑料注射成形的优点
 - 热固性塑料主要采用压缩和压注的方法成形，这两种方法工艺操作复杂、成形周期长、生产效率低、劳动强度大、模具易损坏、成形的质量不稳定。用注射方法成形热固性塑料制件可以说是对热固性塑料成形技术的一次重大改革，它具有简化操作工艺、缩短成形周期、提高生产效率（4倍）、降低劳动强度、提高产品质量、模具使用寿命较长（约10万次）等优点。但这种成形工艺对物料要求较高，目前最常用的是以木粉或纤维素为填料的酚醛塑料，此外还有氨基塑料、不饱和聚酯和环氧树脂等。

2. 注射压力和注射速度
 - 热固性物料在注射机料筒中应处于黏度最低的熔融状态，熔融的塑料高速流经截面很小的喷嘴和模具浇注系统时，温度从60 °C～90 °C瞬间提高到130 °C左右，达到临界固化状态，这也是物料流动性最佳状态的转化点。因热固性塑料中含40%左右的填料，黏度与摩擦阻力较大，注射压力也相应增大，注射压力的一半左右要消耗在克服浇注系统的摩擦阻力上，所以一般注射压力高达100～170 MPa，注射速度常采用3～4.5 m/s。5～20 s

3. 保压压力和保压时间
 - 保压压力和保压时间直接影响模腔压力以及塑件的补缩和密度的大小。常用的保压压力可比注射压力稍低一些，保压时间也可比热塑性塑料注射时略减少些，通常取3.4～5.2 MPa，0～30～70 r/min

4. 螺杆的背压与转速
 - 注射热固性塑料时，螺杆的背压不能太大，否则物料在螺杆中会受到长距离压缩作用，导致熔体过早硬化和注射发生困难，所以背压一般都比注射热塑性塑料时取得小，约为5～20 s

5. 成形周期
 - 在热固性塑料注射成形周期中，最重要的是注射时间和硬化定形时间，此外还有保压时间、开模取件时间和排气等。国产的热固性注射物料的注射时间3～4 s，保压时间约需4 s，硬化定型时间在10～12 s内选择，成形周期共约需20～40 s。热固性塑料的硬化定型时间，不仅要考虑塑件的结构形状、复杂程度和壁厚大小，而且还要注意物料质量的好坏，特别是根据塑件最大壁厚确定硬化时间时，更应注意这个问题。一般国产注射物料充型后的硬化时间可根据硬化速度进行计算。
热固性注射物料的典型工艺条件

<table>
<thead>
<tr>
<th>项目</th>
<th>酚醛</th>
<th>聚甲醛</th>
<th>三聚氰胺</th>
<th>不饱和聚酯</th>
<th>环氧树脂</th>
<th>有机硅</th>
<th>聚酰亚胺</th>
<th>聚丁二烯</th>
</tr>
</thead>
<tbody>
<tr>
<td>螺杆转速 /min</td>
<td>40~80</td>
<td>40~50</td>
<td>40~50</td>
<td>30~80</td>
<td>30~60</td>
<td>30~80</td>
<td>30~80</td>
<td></td>
</tr>
<tr>
<td>喷嘴温度 /°C</td>
<td>90~100</td>
<td>75~95</td>
<td>85~95</td>
<td>80~90</td>
<td>120</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>机筒温度 /°C</td>
<td>75~100</td>
<td>70~95</td>
<td>80~105</td>
<td>70~80</td>
<td>80~90</td>
<td>80~90</td>
<td>88~108</td>
<td>100~130</td>
</tr>
<tr>
<td>后端机筒温度 /°C</td>
<td>40~50</td>
<td>40~50</td>
<td>45~55</td>
<td>30~40</td>
<td>30~40</td>
<td>30~40</td>
<td>65~80</td>
<td>30~50</td>
</tr>
<tr>
<td>模具温度 /°C</td>
<td>160~169</td>
<td>140~160</td>
<td>150~190</td>
<td>170~190</td>
<td>150~170</td>
<td>160~175</td>
<td>170~216</td>
<td>170~200</td>
</tr>
<tr>
<td>注射压力 /MPa</td>
<td>98~147</td>
<td>60~78</td>
<td>59~78</td>
<td>49~147</td>
<td>49~118</td>
<td>49~147</td>
<td>49~147</td>
<td>2.7</td>
</tr>
<tr>
<td>背压 /MPa</td>
<td>0~0.49</td>
<td>0~0.29</td>
<td>0.196~0.49</td>
<td><7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>注射时间 /s</td>
<td>2~10</td>
<td>3~8</td>
<td>3~12</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保压时间 /s</td>
<td>3~15</td>
<td>5~10</td>
<td>5~10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>硬化时间 /s</td>
<td>15~50</td>
<td>15~40</td>
<td>20~70</td>
<td>15~30</td>
<td>60~80</td>
<td>30~60</td>
<td>30~60</td>
<td>60~80</td>
</tr>
</tbody>
</table>

注:
注射有机硅塑料时,机筒分三段控温,前段,中段,后段。

<table>
<thead>
<tr>
<th>项目</th>
<th>酚醛</th>
<th>聚甲醛</th>
<th>三聚氰胺</th>
<th>不饱和聚酯</th>
<th>环氧树脂</th>
<th>有机硅</th>
<th>聚酰亚胺</th>
<th>聚丁二烯</th>
</tr>
</thead>
<tbody>
<tr>
<td>螺杆转速 /min</td>
<td>40~80</td>
<td>40~50</td>
<td>40~50</td>
<td>30~80</td>
<td>30~60</td>
<td>30~80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>喷嘴温度 /°C</td>
<td>90~100</td>
<td>75~95</td>
<td>85~95</td>
<td>80~90</td>
<td>120</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>机筒温度 /°C</td>
<td>75~100</td>
<td>70~95</td>
<td>80~105</td>
<td>70~80</td>
<td>80~90</td>
<td>80~90</td>
<td>88~108</td>
<td>100~130</td>
</tr>
<tr>
<td>后端机筒温度 /°C</td>
<td>40~50</td>
<td>40~50</td>
<td>45~55</td>
<td>30~40</td>
<td>30~40</td>
<td>30~40</td>
<td>65~80</td>
<td>30~50</td>
</tr>
<tr>
<td>模具温度 /°C</td>
<td>160~169</td>
<td>140~160</td>
<td>150~190</td>
<td>170~190</td>
<td>150~170</td>
<td>160~175</td>
<td>170~216</td>
<td>170~200</td>
</tr>
<tr>
<td>注射压力 /MPa</td>
<td>98~147</td>
<td>60~78</td>
<td>59~78</td>
<td>49~147</td>
<td>49~118</td>
<td>49~147</td>
<td>49~147</td>
<td>2.7</td>
</tr>
<tr>
<td>背压 /MPa</td>
<td>0~0.49</td>
<td>0~0.29</td>
<td>0.196~0.49</td>
<td><7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>注射时间 /s</td>
<td>2~10</td>
<td>3~8</td>
<td>3~12</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保压时间 /s</td>
<td>3~15</td>
<td>5~10</td>
<td>5~10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>硬化时间 /s</td>
<td>15~50</td>
<td>15~40</td>
<td>20~70</td>
<td>15~30</td>
<td>60~80</td>
<td>30~60</td>
<td>30~60</td>
<td>60~80</td>
</tr>
</tbody>
</table>

1. 88~108℃ 80~130℃ 65~80℃
2. BIP/INS/PBD
5.4 热固性塑料注射模结构

图5.41 图形
1—定模板（凹模）；2—复位杆；3—凸模；4—推杆；5—浇口套；
6—定位圈；7—电热棒孔；8—导套；9—导柱

在尽量少用镶拼零件。

由于热固性塑料注射压力大，模具受力不平衡时会在分型面之间产生较多的溢料与飞边，因此，型腔位置排布时，在分型面上的投影面积的中心应尽量与注射机的合模力中心相重合。

热固性塑料注射模型腔上下位置对各个型腔或同一型腔的不同部位温度分布影响很大，这是因为自然对流时，热空气由下向上运动影响的结果，实测表明上面部分吸收的热量与下面部分可相差两倍。因此，为了改善这种情况，多型腔布置时应尽量缩短上下型腔之间的距离。

模具材料
热固性塑料注射模的成形零件（型腔与型芯）因受塑料中填料的冲刷作用，需要采用耐磨性较好的材料制造，同时需较低的表面粗糙度，成形部分最好镀铬，以防止腐蚀。

5.4 气体辅助注射成形

气体辅助注射成形的原理

一般注射成形方法要求塑件的壁厚尽量均匀，否则在壁厚处容易产生缩孔和凹陷等缺陷。对于壁厚型件，为了防止凹陷产生，需要加强保压补料时间，但是若厚壁的部位离浇口较远，即使过量保压，也常常难以奏效。同时，由于浇口附近保压压力过大，残余应力增高，所以很容易造成塑件翘曲变形或开裂。目前国外采用的气体辅助注射成形的新工艺，较好地解决了壁厚不均匀的型件以及中空壳体的注射成形问题。

气体辅助注射成形的原理较简单，即在注射充模过程中，向熔体内注入比注射压力低的低压气体，通常为几兆帕到几十兆帕，利用气体的压力实现保压补缩。
气体辅助注射成形的原理如图所示。成形时首先向型腔内注入经准确计量的熔体，然后经特殊的喷嘴在熔体中注入气体（一般为氮气），气体扩散推动熔体充满型腔。充模结束后，熔体内气体的压力保持不变或者有所升高进行保压补料，冷却后排除塑件内的气体便可脱模。

气体辅助注射成形的注意点
在气体辅助注射成形中，熔体的精确定量十分重要。若注入熔体过多，则会造成壁厚不均匀；反之，若注入熔体过少，气体会冲破熔体使成形无法进行。

气体辅助注射成形的分类
气体辅助注射成形只要在现有的注射机上增加一套供气装置即可实现。根据国外使用的情况，气体辅助注射成形常见的是标准成形法、熔体回流法和活动型芯法三种方法。

（1）标准成形法
标准成形方法如图所示。图（a）为一部分熔体由注射机料筒注入到模具型腔中；图（b）为通入气体推动熔体充满型腔；图（c）为升高气体压力，实现保压补料；图（d）为保压后排去气体；图（e）为塑件脱模。

（2）熔体回流法
熔体回流法如图所示。图（a）为熔体充填型腔并保压；图（b）为气体喷嘴向型芯供气。
腔内注入气体，注射机的液压缸开启，使气体进入熔体后使多余出来的熔体流回加热料筒中；为关闭注射机的液压缸，升高气体压力实现保压补缩；为排气；为塑件脱模。

熔体回流法（活动型芯退出法）

活动型芯退出的方法如图所示。图为熔体充满型腔并保压；图为注入气体，活动型芯从型腔中退出；图为升高气体的压力，实现保压补缩；图为排气，使塑件脱模。

图
气体辅助注射成形的特点

(1) 气体辅助注射成形的优点

与传统的注射成形方法相比较,气体辅助注射成形有如下优点:

(1) 能够成形壁厚不均匀的塑料制件及复杂的三维中空塑件。

(2) 气体从浇口至流动末端形成连续的气流通道,无压力损失,能够实现低压注射成形,由此能获得低残余应力的塑件,塑件翘曲变形小,尺寸稳定。

(3) 由于气流的辅助充模作用,提高了塑件的成形性能,因此采用气体辅助注射有助于成形薄壁塑件,减小了塑件的质量。

(4) 由于注射成形压力较低,可在锁模力较小的注射机上成形尺寸较大的塑件。

(2) 气体辅助注射成形存在的缺点

气体辅助注射成形存在如下缺点:

(1) 需要增设供气装置和充气喷嘴,提高了设备的成本。

(2) 采用气体辅助注射成形技术时对注射机的精度和控制系统有一定的要求。

(3) 在塑件注入气体与未注入气体的表面会产生不同的光泽。

(4) 找出一种热流道注射模生产的产品,并测绘出模具图。

(5) 热流道板采用哪些方式绝热?画出结构图。

(6) 热流道注射模如何解决热流道元件的热胀冷缩问题?

(7) 采用热流道浇注系统成形塑件时对塑件的原材料性能有哪些要求?

(8) 要设置二次推出机构?

(9) 找出一种应采用定、动模双向顺序推出机构的塑料制品,并画出其所采用的推出机构。

(10) 如何改变这些塑料制品的设计,使其可以采用简单的推出机构?

(11) 设计一种机动脱螺纹机构,画出结构图。

(12) 设置定、动模双向顺序推出机构有什么作用?

(13) 弹簧双向顺序推出机构的特点有哪些?

(14) 简述滑块式双向顺序推出机构的工作过程?

(15) 采用模内旋转方式脱螺纹,塑件上为什么必须带有止转的结构?

(16) 什么情况下塑料制品上的螺纹可采用拼合型芯或型环脱模方式?
6.1 侧分型与抽芯注射模实例分析

6.1.1 侧分型与抽芯机构的类型

当注射成形侧壁带有孔、凹穴、凸台等塑件时,模具上成形该处的零件就必须制成可侧向移动的零件,称为活动型芯,在塑件脱模前先将活动型芯抽出,否则就无法脱模。带动活动型芯作侧向移动(抽拔与复位)的整个机构称为侧分型与抽芯机构,简称侧抽芯机构。

根据动力来源的不同,侧抽芯机构一般可分为机动、液压(液动)或气动以及手动等三大类型。

机动侧抽芯机构

机动侧抽芯机构是利用注射机开模力作为动力,通过有关传动零件(如斜导柱)使力作用于侧向成形零件而将模具侧分型或把活动型芯从塑件中抽出,合模时又靠它使侧向成形零件复位。

这类机构虽然结构比较复杂,但分型与抽芯不用手工操作,生产率高,在生产中应用最为广泛。根据传动零件的不同,这类机构可分为斜导柱、弯销、斜导槽、斜滑块和齿轮齿条等不同类型的侧抽芯机构,其中斜导柱侧抽芯机构最为常用。

液压或气动侧抽芯机构

液压或气动侧抽芯机构是以液压力或压缩空气作为动力进行侧分型与抽芯,同样亦靠液压力或压缩空气使活动型芯复位。

液压或气动侧抽芯机构多用于抽拔力大、抽芯距比较长的场合,例如大型管子塑件的抽芯等。这类侧抽芯机构是靠液压缸或气缸的活塞来回运动进行的,抽芯的动作比较平稳,特别是有些注射机本身就带有抽芯液压缸,所以采用液压侧分型与抽芯更为方便,但缺点是液压或气动装置成本较高。

手动侧分型与抽芯机构

手动侧抽芯机构是利用人力将模具侧分型或把侧向型芯从成形塑件中抽出。这一类机构操作不方便、工人劳动强度大、生产率低,但模具的结构简单、加工制造成本低,因此常用于产品的试制、小批量生产或无法采用其他侧抽芯机构的场合。

手动侧抽芯机构的形式很多,可根据不同塑件设计不同形式的手动侧抽芯机构。
芯可分为两类，一类是模内手动分型抽芯，另一类是模外手动分型抽芯，而模外手动分型抽芯机构实质上是带有活动镶件的模具结构。

斜导柱侧抽芯注射模结构组成及工作过程

斜导柱侧抽芯机构

斜导柱侧抽芯机构是利用斜导柱等零件把开模力传递给侧型芯或侧向成形块，使之产生侧向运动完成抽芯与分型动作。

这类侧抽芯机构的特点是结构紧凑、动作安全可靠、加工制造方便，是设计和制造注射模抽芯时最常用的机构，但它的抽芯力和抽芯距受到模具结构的限制，一般适用于抽芯力不大及抽芯距小于 60 ~ 80 mm 的场合，如图所示。

图 — 斜导柱侧抽芯机构

— 动模座板；
— 垫块；
— 支承板；
— 动模板；
— 挡块；
— 螺母；
— 弹簧；
— 滑块拉杆；
— 楔紧块；
— 斜导柱；
— 侧型芯滑块；
— 型芯；
— 浇口套；
— 定模座板；
— 导柱；
— 定模板；
— 推杆；
— 拉料杆；
— 推杆固定板；
— 推板。
斜导柱侧抽芯机构的组成

斜导柱侧抽芯机构主要由斜导柱、侧型芯滑块、导滑槽、楔紧块和型芯滑块定距限位装置等组成，见图。

斜导柱又叫斜销，它靠开模力来驱动从而产生侧向抽芯力，迫使侧型芯滑块在导滑槽内向外移动，达到侧抽芯的目的。

侧型芯滑块是成形塑件上侧凹或侧孔的零件，滑块与侧型芯既可做成整体式，也可做成组合式。

导滑槽是维持滑块运动方向的支撑零件，要求滑块在导滑槽内运动平稳，无上下窜动和卡紧现象。

使型芯滑块在抽芯后保持最终位置的限位装置由限位挡块、滑块拉杆、螺母和弹簧组成，它可以保证闭模时斜导柱能很准确地插入滑块的斜孔，使滑块复位。

楔紧块是闭模装置，其作用是在注射成形时，承受滑块传来的侧推力，以免滑块产生位移或使斜导柱因受力过大产生弯曲变形。

斜导柱侧抽芯机构的工作过程

斜导柱侧抽芯机构注射模的工作过程如图所示。图中的塑件有一侧通孔，开模时，动模部分向后移动，开模力通过斜导柱驱动侧型芯滑块，迫使其在动模板的导滑槽内向外滑动，直至滑块与塑件完全脱开，完成侧向抽芯动作。这时塑件包在型芯上随动模继续后移，直到注射机顶杆与模具推板接触，推出机构开始工作，推杆将塑件从型芯上推出。合模时，复位杆使推出机构复位，斜导柱使侧型芯滑块向内移动复位，最后由楔紧块锁紧。

斜导柱侧抽芯机构设计与计算

1. 抽芯距与抽芯力的计算

 1.1 抽芯距的计算

 将侧型芯从成形位置到不妨碍塑件的脱模推出位置所移动的距离称为抽芯距，用表示。

 为了安全起见，侧向抽芯距离通常比塑件上的侧孔、侧凹的深度或侧向凸台的高度大。但在某些特殊的情况下，当侧型芯或侧型腔从塑件中虽已脱出，但仍阻碍塑件脱模时，就不能简单地使用这种方法确定抽芯距离。图所示是个线圈骨架的侧分型注射模，其抽芯距应是，塑件才能脱出。

 \[s = s_1 - 0 \leq r \leq R \]

 式中：

 - \(s \) ——抽芯距；
 - \(s_1 \) ——为取出塑件，型芯滑块移动的最小距离；
 - \(R \) ——线圈骨架台肩半径；
 - \(r \) ——线圈半径。
抽芯力的计算

抽芯力的计算同脱模力计算相同。对于侧向凸起较少的塑件的抽芯力往往是比较小的，仅仅是克服塑件与侧型腔的粘附力和侧型腔滑块移动时的摩擦阻力。对于侧型芯的抽芯力，往往采用如下公式进行估算:

$$ F_c = ch \mu \cos \alpha - \sin \alpha $$

其中，F_c——抽芯力，单位为N；c——侧型芯成形部分的截面平均周长，单位为m；h——侧型芯成形部分的高度，单位为m；p——塑件对侧型芯的收缩应力（包紧力），单位为MPa；μ——塑料在热状态时对钢的摩擦系数，一般为0.15~0.2；α——侧型芯的脱模斜度或倾斜角，单位为°。

6.2.2 侧滑块的设计

1. 斜导柱的设计

- **斜导柱的结构设计**
 - 斜导柱的形状如图所示，其工作端的端部可以设计成锥台形或半球形。由于半球形车制时较困难，所以绝大部分均设计成锥台形。设计成锥台形时必须注意斜角应大于斜导柱倾斜角，一般$\alpha < \theta$，以免端部锥台也参与侧抽芯，导致滑块停留位置不符合原设计要求。
 - 为了减少斜导柱与滑块上斜导孔之间的摩擦，可在斜导柱工作长度部分的外圆轮廓铣出两个对称平面，如图所示。
 - 斜导柱的材料多为GCr15、GCr15等碳素工具钢，也可以用40钢渗碳处理。由于斜导柱经常与滑块摩擦，热处理要求硬度$HRC \geq 55$，表面粗糙度值$R_a \leq 0.8 \mu m$。
 - 斜导柱与其固定的模板之间采用过渡配合。

2. 斜导柱的形状

- (a) 端部为锥台形
- (b) 端部为半球形
为了运动的灵活，滑块上斜导孔与斜导柱之间可以采用较松的间隙配合，或在两者之间保留一定的间隙。

在特殊情况下（例如斜导柱固定在动模、滑块固定在定模的结构），为了使滑块的运动滞后于开模动作，以便分型面先打开一定的缝隙，让塑件与凸模之间先松动之后再驱动滑块做侧抽芯，即抽芯动作滞后于开模动作，这时斜导柱与滑块上斜导孔之间的间隙可放大至一定值。

斜导柱倾斜角确定斜导柱轴向与开模方向的夹角称为斜导柱的倾斜角，如图所示，它是决定斜导柱抽芯机构工作效果的重要参数。

斜导柱的工作长度 L 与抽芯距 s 、斜导柱的倾斜角 α 、与抽芯距对应的开模距 H 等起着决定性的影响。

式中 L ——斜导柱的工作长度；s ——抽芯距；α ——斜导柱的倾斜角；H ——与抽芯距对应的开模距。

图所示是斜导柱抽芯时的受力图，可得出开模力 F_w 、侧抽芯时斜导柱所受的弯曲力 F_i 、侧抽芯时的脱模力 F_k 、侧抽芯时所需的开模力 F_k 。

由式可知：增大 α 和 H 减小，有利于减小模具尺寸，但 L 和 s 增大，影响斜导柱和模具的强度和刚度；反之，α 减小，斜导柱和模具受力减小，但要在获得相同抽芯距的情况下。
当抽芯方向与开模方向不垂直而成一定交角时，也可采用斜导柱抽芯机构。图(1)4所示为滑块外侧向动模一侧倾斜角度的情况，影响抽芯效果的斜导柱有效倾斜角为

\[\alpha_1 = \alpha + \beta \]

值应在

\[12^\circ \leq \alpha + \beta \leq 22^\circ \]

内选取，比不倾斜时要取得小些。图(1)4所示为滑块外侧向定模一侧倾斜角度的情况，影响抽芯效果的斜导柱的有效倾斜角为

\[\alpha_2 = \alpha - \beta \]

值应在

\[12^\circ \leq \alpha - \beta \leq 22^\circ \]

内选取，比不倾斜时可取得大些。

斜导柱的长度在确定斜导柱倾斜角时，通常抽芯距短时可适当取小些，抽芯距长时取大些；抽芯力大时可取小些，抽芯力小时可取大些。另外还应注意，斜导柱在对称布置时，抽芯力可相互抵消，可取大些，而斜导柱非对称布置时，抽芯力无法抵消，要取小些。

斜导柱的长度计算

斜导柱的长度见图(1)4，其工作长度与抽芯距有关。当滑块向动模一侧或向定模一侧倾斜角度后，斜导柱的工作长度为

\[L = s \frac{\cos \beta}{\sin \alpha} \]

斜导柱的总长度与抽芯距、斜导柱的直径和倾斜角以及斜导柱固定板厚度等有关。斜导柱的总长为

\[L_z = L_1 + L_2 + L_3 + L_4 + L_5 \]

\[= \frac{d_2}{2} \tan \alpha + \frac{h}{\cos \alpha} + \frac{d_1}{2} \tan \alpha + \frac{s}{\sin \alpha} \]

\[5 \sim 10 \text{ mm} \]
斜导柱工作部分直径；

斜导柱安装固定部分的长度为

式中

斜导柱固定部分的直径，

斜导柱的受力分析与直径计算

斜导柱在抽芯过程中受到弯曲力的作用，如图所示。为了便于分析，先分析滑块的受力情况。在图中：

是抽芯力的反作用力，其大小与相等、方向相反；

是开模力，它通过导滑槽施加于滑块；

是斜导柱通过斜导孔施加于滑块的正压力，其大小与斜导柱所受的弯曲力相等；

是斜导柱与滑块间的摩擦力，是滑块与导滑槽间的摩擦力。另

外，假定斜导柱与滑块、滑块与导滑槽之间的摩擦系数均为。
式中

\[M_w = F_w L_w \]

- \(M_w \)———斜导柱所受弯矩;
- \(L_w \)———斜导柱弯曲力臂。

由材料力学可知

\[M_w = \sigma_w W \]

- \(\sigma_w \)———斜导柱所用材料的许用弯曲应力;
- \(W \)———抗弯截面系数。

\[W = \frac{\pi}{32} d^3 \approx 0.1 d^3 \]

\[d = \sqrt[3]{\frac{F_w L_w}{0.1 \sigma_w \cos \alpha}} = \sqrt[3]{\frac{10 F_w L_w}{\sigma_w \cos^2 \alpha}} = \sqrt[3]{\frac{10 F_w H_w}{\sigma_w \cos^2 \alpha}} \]

- \(H_w \)———侧型芯滑块受的脱模力作用线与斜导柱中心线的交点到斜导柱固定板的距离，它并不等于滑块高的一半。

由于计算比较复杂，有时为了方便，也可以用查表方法确定斜导柱的直径。先按抽芯力

\[F_c \]

和斜导柱倾斜角

\[\alpha \]

在表中查出最大弯曲力

\[F_w \]

然后根据

\[F_w \]

和

\[H_w \]

以及

\[\sigma_w \]

在表中查出斜导柱直径

\[d \]

表 6-1

<table>
<thead>
<tr>
<th>(F_c /\text{kN})</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>0.97</td>
<td>0.96</td>
<td>0.95</td>
<td>0.94</td>
</tr>
<tr>
<td>2.00</td>
<td>1.98</td>
<td>1.97</td>
<td>1.95</td>
<td>1.93</td>
<td>1.90</td>
<td>1.88</td>
</tr>
<tr>
<td>3.00</td>
<td>2.97</td>
<td>2.95</td>
<td>2.93</td>
<td>2.89</td>
<td>2.85</td>
<td>2.82</td>
</tr>
<tr>
<td>4.00</td>
<td>3.96</td>
<td>3.94</td>
<td>3.91</td>
<td>3.86</td>
<td>3.80</td>
<td>3.76</td>
</tr>
<tr>
<td>5.00</td>
<td>4.95</td>
<td>4.92</td>
<td>4.89</td>
<td>4.82</td>
<td>4.75</td>
<td>4.70</td>
</tr>
<tr>
<td>6.00</td>
<td>5.94</td>
<td>5.91</td>
<td>5.86</td>
<td>5.70</td>
<td>5.70</td>
<td>5.64</td>
</tr>
<tr>
<td>7.00</td>
<td>6.93</td>
<td>6.89</td>
<td>6.84</td>
<td>6.75</td>
<td>6.65</td>
<td>6.58</td>
</tr>
<tr>
<td>8.00</td>
<td>7.92</td>
<td>7.88</td>
<td>7.82</td>
<td>7.72</td>
<td>7.60</td>
<td>7.52</td>
</tr>
<tr>
<td>9.00</td>
<td>8.91</td>
<td>8.86</td>
<td>8.80</td>
<td>8.68</td>
<td>8.55</td>
<td>8.46</td>
</tr>
<tr>
<td>10.00</td>
<td>9.91</td>
<td>9.85</td>
<td>9.78</td>
<td>9.65</td>
<td>9.50</td>
<td>9.40</td>
</tr>
<tr>
<td>11.00</td>
<td>10.89</td>
<td>10.83</td>
<td>10.75</td>
<td>10.61</td>
<td>10.45</td>
<td>10.34</td>
</tr>
<tr>
<td>12.00</td>
<td>11.82</td>
<td>11.73</td>
<td>11.58</td>
<td>11.40</td>
<td>11.28</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>12.87</td>
<td>12.80</td>
<td>12.71</td>
<td>12.54</td>
<td>12.35</td>
<td>12.22</td>
</tr>
<tr>
<td>14.00</td>
<td>13.86</td>
<td>13.79</td>
<td>13.69</td>
<td>13.51</td>
<td>13.30</td>
<td>13.16</td>
</tr>
<tr>
<td>16.00</td>
<td>15.84</td>
<td>15.76</td>
<td>15.64</td>
<td>15.44</td>
<td>15.20</td>
<td>15.04</td>
</tr>
</tbody>
</table>
滑块的设计

滑块是斜导柱侧抽芯机构中的一个重要零部件，它上面安装有侧向型芯或侧向成形块，注射成形时塑件尺寸的准确性和移动的可靠性都需要靠它的运动精度保证。滑块的结构形状可以根据具体塑件和模具结构灵活设计，它可分为整体式和组合式两种。

在滑块上直接制出侧向型芯或侧向型腔的结构称为整体式，这种结构仅适于形状十分简单的侧向移动零件，尤其是适于对开式瓣合模侧向分型，如线圈骨架塑件的侧型腔滑块。在一般的设计中，把侧向型芯或侧向成形块和滑块分开加工，然后再装配在一起，这就是所谓组合式结构。采用组合式结构可以节省优质钢材，且加工容易，因此应用广泛。

图2

图2所示是几种常见的滑块与侧型芯连接的方式。

表1

<table>
<thead>
<tr>
<th>F_/kN</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.00</td>
<td>16.83</td>
<td>16.74</td>
<td>16.62</td>
<td>16.40</td>
<td>16.15</td>
<td>15.93</td>
</tr>
<tr>
<td>18.00</td>
<td>17.82</td>
<td>17.73</td>
<td>17.60</td>
<td>17.37</td>
<td>17.10</td>
<td>17.80</td>
</tr>
<tr>
<td>16.00</td>
<td>18.81</td>
<td>18.71</td>
<td>18.58</td>
<td>18.33</td>
<td>18.05</td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>16.80</td>
<td>16.70</td>
<td>16.56</td>
<td>16.30</td>
<td>16.00</td>
<td>18.80</td>
</tr>
<tr>
<td>21.00</td>
<td>20.79</td>
<td>20.68</td>
<td>20.53</td>
<td>20.26</td>
<td>16.95</td>
<td>16.74</td>
</tr>
<tr>
<td>22.00</td>
<td>21.78</td>
<td>21.67</td>
<td>21.51</td>
<td>21.23</td>
<td>20.90</td>
<td>20.68</td>
</tr>
<tr>
<td>23.00</td>
<td>22.77</td>
<td>22.65</td>
<td>22.49</td>
<td>22.19</td>
<td>21.85</td>
<td>21.62</td>
</tr>
<tr>
<td>24.00</td>
<td>23.76</td>
<td>23.64</td>
<td>23.47</td>
<td>23.16</td>
<td>22.80</td>
<td>22.56</td>
</tr>
<tr>
<td>25.00</td>
<td>24.75</td>
<td>24.62</td>
<td>24.45</td>
<td>24.12</td>
<td>23.73</td>
<td>23.50</td>
</tr>
<tr>
<td>26.00</td>
<td>25.74</td>
<td>25.61</td>
<td>25.42</td>
<td>25.09</td>
<td>24.70</td>
<td>24.44</td>
</tr>
<tr>
<td>27.00</td>
<td>26.73</td>
<td>26.59</td>
<td>26.40</td>
<td>26.05</td>
<td>25.65</td>
<td>25.38</td>
</tr>
<tr>
<td>28.00</td>
<td>27.72</td>
<td>27.58</td>
<td>27.38</td>
<td>27.02</td>
<td>26.60</td>
<td>26.32</td>
</tr>
<tr>
<td>26.00</td>
<td>28.71</td>
<td>28.56</td>
<td>28.36</td>
<td>27.98</td>
<td>27.55</td>
<td>27.26</td>
</tr>
<tr>
<td>30.00</td>
<td>26.70</td>
<td>26.65</td>
<td>26.34</td>
<td>28.95</td>
<td>28.50</td>
<td>28.20</td>
</tr>
<tr>
<td>31.00</td>
<td>30.69</td>
<td>30.53</td>
<td>30.31</td>
<td>26.91</td>
<td>26.45</td>
<td>26.14</td>
</tr>
<tr>
<td>32.00</td>
<td>31.68</td>
<td>31.52</td>
<td>31.29</td>
<td>30.88</td>
<td>30.40</td>
<td>30.08</td>
</tr>
<tr>
<td>33.00</td>
<td>32.67</td>
<td>32.50</td>
<td>32.27</td>
<td>31.84</td>
<td>31.35</td>
<td>31.02</td>
</tr>
<tr>
<td>34.00</td>
<td>33.66</td>
<td>33.49</td>
<td>33.25</td>
<td>32.81</td>
<td>32.30</td>
<td>31.96</td>
</tr>
<tr>
<td>35.00</td>
<td>34.65</td>
<td>34.47</td>
<td>34.23</td>
<td>33.77</td>
<td>33.25</td>
<td>32.00</td>
</tr>
<tr>
<td>36.00</td>
<td>35.64</td>
<td>35.46</td>
<td>35.20</td>
<td>34.74</td>
<td>34.20</td>
<td>33.81</td>
</tr>
<tr>
<td>37.00</td>
<td>36.63</td>
<td>36.44</td>
<td>36.18</td>
<td>35.70</td>
<td>35.15</td>
<td>34.78</td>
</tr>
<tr>
<td>38.00</td>
<td>37.62</td>
<td>37.43</td>
<td>37.16</td>
<td>36.67</td>
<td>36.10</td>
<td>35.72</td>
</tr>
<tr>
<td>39.00</td>
<td>38.61</td>
<td>38.41</td>
<td>38.14</td>
<td>37.63</td>
<td>37.05</td>
<td>36.66</td>
</tr>
<tr>
<td>40.00</td>
<td>36.60</td>
<td>36.40</td>
<td>36.12</td>
<td>38.60</td>
<td>38.00</td>
<td>37.60</td>
</tr>
<tr>
<td>斜导柱倾斜角 $\alpha /(^\circ)$</td>
<td>H_0 /mm</td>
<td>最大弯曲力/kN</td>
<td>斜导柱直径/mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>斜导柱倾斜角 α/ (°)</td>
<td>H_x/mm</td>
<td>最大弯曲力/kN</td>
<td>斜导柱直径/mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
是小型芯在非成形端尺寸放大后用的配合镶入滑块,然后用一个圆柱销定位,如侧型芯足够大,尺寸亦可不再放大;图所示是为了提高型芯的强度,适当加了型芯镶入部分的尺寸,并用两个骑缝销钉固定;图所示是采用燕尾形式连接,一般也应该用圆柱销定位;图所示适于细小型芯的连接方式,在细小型芯后部制出台肩,从滑块的后部以过渡配合镶入后用螺塞固定;图所示适用于薄片型芯,采用通槽嵌装和销钉定位;图所示适用于多个型芯的场合,把各型芯镶入一固定板后用螺钉和销钉从正面与滑块连接和定位,如正面影响塑件成形,螺钉和销钉可以从滑块的背面深入侧型芯固定板。侧向型芯或侧向成形块是模具的成形零件,常用\(45\)、\(40\)、\(56\)钢或\(58\)钢等,热处理要求硬度\(42\ \&\ 05\)。滑块用\(45\)钢或\(40\)、\(56\)等制造,要求硬度\(32\ \&\ 05\)。
情况,滑块与导滑槽的配合形式也不同,一般采用燕尾形槽或燕尾槽导滑,常用的配合形式如图所示。

图(a)所示是燕尾形槽导滑的整体式,结构紧凑,多用于小型模具的抽芯机构,但加工困难,精度不易保证;图(b)和图(c)所示是整体盖板式,图(b)是在盖板上制出燕尾形台肩的导滑部分,而图(c)的燕尾形台肩的导滑部分是在另一块模板上加工出来的,它们克服了整体式要用铣刀加工出精度较高的燕尾形槽的困难;图(d)和图(e)所示结构也可以设计成局部盖板式,这就是图(f)和图(g)的两种结构形式,导滑部分淬硬后便于磨削加工,精度也容易保证,而且装配方便,因此,它们是最常用的两种形式;图(h)所示虽然也是采用燕尾形槽的形式,但移动方向的导滑部分设在中间的镶块上,而高度方向的导滑部分还是靠燕尾形槽;图(i)所示是整体燕尾槽导滑的形式,导滑的精度较高,但加工更加困难。

组成导滑槽的零件对硬度和耐磨性都有一定的要求。一般情况下,整体式导滑槽通常在动模板或定模板上直接加工出,常用材料为IT8钢。为了便于加工和防止热处理变形,常常调质至01-2-30-456后铣削成形。盖板的材料用IT1、IT$%或IT8钢,要求硬度≥50 HRC

在设计滑块与导滑槽时,要注意选用正确的配合精度。导滑槽与滑块导滑部分采用间隙配合,一般采用41-7,18,如果在配合面上成形时与熔融塑料接触,为了防止配合部分漏料,应适当提高精度,可采用41-7-8或41-7-8。其他各处均留有0.5左右的间隙。配合部分的表面要求较高,表面粗糙度值均应≤0.8 μm

导滑槽与滑块还要保持一定的配合长度。滑块完成抽芯动作后,其滑动部分仍应全部或有部分的长度留在导滑槽内,滑块的滑动配合长度通常要大于滑块宽度的1/3倍,而保留在导滑槽内的长度不应小于导滑配合长度的2/3,否则,滑块开始复位时容易偏斜,甚至损坏模具。如果模具的尺寸较小,为了保证具有一定的导滑长度,可以把导滑槽局部加长,使其伸出模外。
图12所示是与模板制成一体的整体式结构，牢固可靠，但消耗的金属材料较多，加工精度要求较高，适合于侧向力较大的场合；图12所示是采用销钉定位、螺钉（三个以上）紧固的形式，结构简单、加工方便，应用较普遍，但承受的侧向力较小；图12所示为把楔紧块用配合整体镶入模板中，承受的侧向力要比图12所示的形式大；图12所示在楔紧块的背面又设置了一个后挡块，对楔紧块起加强作用；图12所示采用了双楔紧块的形式，这种结构适于侧向力很大的场合，但安装调试较困难。

楔紧块的结构形式

楔紧块的锁紧角的选择

楔紧块的工作部分是斜面，其锁紧角\(\alpha' \)，如图12所示。为了保证斜面能在合模时压紧滑块，而在开模时又能迅速脱离滑块，以避免楔紧块影响斜导柱对滑块的驱动，锁紧角\(\alpha' \)一般都应比斜导柱倾斜角\(\alpha \)大一些。在图中，滑块移动方向垂直于合模方向，\(\alpha = \alpha' \approx 2^\circ \sim 3^\circ \)。当滑块向动模一侧倾斜\(\alpha \)角度时，如图12所示，\(\beta = \alpha' + \beta \approx 2^\circ \sim 3^\circ \)。当滑块向定模一侧倾斜\(\alpha \)角度时，如图12所示，\(\beta = \alpha' + \beta \approx 2^\circ \sim 3^\circ \)。
楔紧块的锁紧角

依靠压缩弹簧的弹力使滑块停留在限位挡块处，俗称弹簧拉杆挡块式，它适用于任何方向的抽芯动作，尤其用于向上方向的抽芯。在设计弹簧时，为了使滑块可靠地在限位挡块上定位，压缩弹簧的弹力是滑块质量的（）倍左右，其压缩长度须大于抽芯距（），一般取（）较合适。拉杆是支持弹簧的，当抽芯距、弹簧的直径和长度已确定，则拉杆的直径和长度也就已确定，拉杆的长度计算如下

\[L_i = 2d + s + t + 0.8L_d + 4d \]

式中

- \(L_i \) ——拉杆的长度；
- \(d \) ——拉杆的直径；
- \(s \) ——抽芯距；
- \(t \) ——挡块的厚度；
- \(L_d \) ——弹簧的自由长度；

斜导柱侧抽芯机构设计与计算
6.3

6.3.1

斜导柱侧抽芯机构应用形式

斜导柱安装在定模、侧滑块安装在动模的结构，是斜导柱侧向分型抽芯机构的模具中应用最广泛的形式。它既可用于结构比较简单的注射模，也可用于结构比较复杂的双分型面注射模。模具设计人员在接到设计具有侧抽芯塑件的模具任务时，首先应考虑使用这种形式。图所示属于单分型面模具的这类形式，而图所示是属于双分型面模具的这类形式。
在图中，斜导柱固定于中间板上，为了防止在分型面分型后，侧向抽芯时斜导柱往后移动，在其固定端后部设置一块垫板加以固定。开模时，动模部分向左移动，分型面首先分型；当分型面之间距离可从中取出点浇口浇注系统的凝料时，拉杆导柱的左端螺钉与导套接触；继续开模，分型面分型，斜导柱驱动侧型芯滑块在动模板的导滑槽内作侧向抽芯；斜导柱脱离滑块后继续开模，最后推出机构开始工作，将塑件从型芯和动模镶件中推出。

这种形式在设计时必须注意，侧型芯滑块与推杆在合模复位过程中不能发生“干涉”现象。所谓干涉现象是指滑块的复位先于推杆的复位致使活动侧型芯与推杆相碰撞，造成活动侧型芯或推杆损坏的事故。侧向型芯与推杆发生干涉的可能性出现在两者在垂直于开模方向平面上的投影发生重合的条件下，如图所示。

在模具结构允许的情况下，应尽量避免在侧型芯的投影范围内设置推杆。如果受到模具结构的限制而侧型芯的投影下一定要设置推杆，应首先考虑能否使推杆在推出一定距离后仍低于侧型芯的最低面，当这一条件不能满足时，就必须分析产生干涉的临界条件和采取措施使推出机构先复位，然后才允许型芯滑块复位，这样才能避免干涉。下面分别介绍避免侧型芯与推杆干涉的条件和推杆先复位机构。

避免干涉现象的条件

图所示为开模侧抽芯后推杆推出塑件的情况。图是合模复位时，复位杆使推杆复位、斜导柱使侧型芯复位而侧型芯与推杆不发生干涉的临界状态；图是合模复位完毕的状态。从图中可知，在不发生干涉的临界状态下，侧型芯已复位，还需复位的长度为，而推杆需复位的长度为，如果完全复位，应该为即

在完全不发生干涉的情况下，需要在临界状态时侧型芯与推杆还有一段微小的距离，因此不发生干涉的条件为

斜导柱侧抽芯机构应用形式
式中

\[h_c \tan \alpha > s_c \]

- \(h_c \) ——在完全合模状态下推杆端面到侧型芯的最近距离；
- \(s_c \) ——在垂直于开模方向的平面上，侧型芯与推杆投影重合的长度；
- \(\Delta \) ——在完全不干涉的情况下，推杆复位到位置时，侧型芯沿复位方向距离推杆侧面的最小距离，一般取

\[\Delta = 0.5 \text{ mm} \]

\[h_c \tan \alpha - s_c > 0.5 \text{ mm} \]

在一般情况下，只要使\(h_c \tan \alpha - s_c \)即可避免干涉。如果实际的情况无法满足这个条件，则必须设计推杆先复位机构。

图6-17显示了不发生干涉的条件

- 1—复位杆；
- 2—动模板；
- 3—推杆；
- 4—侧型芯滑块；
- 5—斜导柱；
- 6—定模板；
- 7—楔紧块

推杆先复位机构

推杆先复位机构应根据塑件和模具的具体情况进行设计，下面介绍几种典型的推杆先复位机构，但应注意，先复位机构一般都不容易保证推杆、推管等推出零件的精确复位，故在设计先复位机构的同时，通常还需要设置能保证复位精度的复位杆。

弹簧式先复位机构

弹簧先复位机构是利用弹簧的弹力使推出机构在合模之前进行复位，弹簧安装在推杆固定板和动模垫板之间，如图6-17所示。图6-17中弹簧安装在复位杆上；图6-17中弹簧安装在另外设置的簧柱上；图6-17弹簧安装在推杆上。一般情况设置2根弹簧，并且尽量均匀分布推杆固定板的四周，以便让推杆固定板受到均匀的弹力而使推杆顺利复位。

开模推出塑件时，塑件包在凸模上一起随动模部分后退，当推板与注射机上的顶杆接触后，动模部分继续后退，推出机构相对静止而开始脱模，弹簧被进一步压缩。一旦开始合模，注射机顶杆与模具推板脱离接触，在弹簧回复力的作用下推杆迅速复位，因此在斜导柱还未驱动侧型芯滑块复位时，推杆便复位结束，因此避免了与侧型芯的干涉。

弹簧先复位机构具有结构简单、安装方便等优点，但弹簧的力量较小，而且容易疲劳失效，可靠性差，一般只适于复位力不大的场合，并需要定期更换弹簧。

楔杆三角滑块式先复位机构

楔杆三角滑块式先复位机构如图6-18所示。合模时，固定在定模板上的楔杆与三角滑块重合。合模过程中，楔杆先复位，然后再进行侧型芯滑块的复位。推杆复位后，楔杆与三角滑块再次重合，从而保证侧型芯滑块的精确复位。
弹簧式先复位机构

- 推板
- 推板固定板
- 弹簧
- 推杆
- 复位杆
- 簧柱

楔杆三角滑块式先复位机构

- 楔杆
- 斜导柱
- 侧型芯滑块
- 三角滑块
- 推管
- 推管固定板

楔杆摆杆式先复位机构

- 楔杆
- 推杆
- 支承板
- 摆杆
- 推杆固定板
- 推板

楔杆摆杆式先复位机构如图所示，它与楔杆三角滑块式复位机构相似，所不同的是...
楔杆双摆杆式先复位机构

图所示为楔杆双摆杆式先复位机构，其工作原理与楔杆摆杆式先复位机构相似，这里不再详述。

楔杆滑块摆杆式先复位机构

连杆式先复位机构

斜导柱安装在动模、侧滑块安装在定模的结构，由于在开模时一般要求塑件包紧于动模
部分的型芯上留于动模，而侧型芯则安装在定模，这样就会产生以下几种情况：

一种情况是侧抽芯与脱模同时进行，由于侧型芯在合模方向的阻碍作用，使塑件从动模部分的凸模上强制脱下而留于定模型腔，侧抽芯结束后，塑件就无法从定模型腔中取出。

另一种情况是由于塑件包紧于动模凸模的力大于侧型芯使塑件留于定模型腔的力，则可能出现塑件被侧型芯撕破或细小侧型芯被折断的现象，导致模具损坏或无法工作。

从以上分析可知，斜导柱安装在动模、滑块安装在定模结构的模具特点是脱模与侧抽芯不能同时进行，两者之间要有一个滞后的过程。

图所示为先脱模后侧抽芯的结构，该模具的特点是不设推出机构，凹模制成可侧向滑动的瓣合式模块，斜导柱(与凹模滑块上的斜导孔之间存在着较大的间隙(。
开模时，在凹模滑块侧向移动之前，动、定模将先分开一段距离。同时由于凹模滑块的约束，塑件与凸模也将脱开一段距离，然后斜导柱才与凹模滑块上的斜导孔壁接触，侧向分型抽芯动作开始。

这种形式的模具结构简单，加工方便，但塑件需要人工从瓣合凹模滑块之间取出，操作不方便，生产率也较低，因此仅适合于小批量生产的简单模具。

图所示为先侧抽芯后脱模的结构，为了使塑件不留在定模，该设计的特点是凸模与动模板之间有一段可相对运动的距离，开模时，动模部分向下移动，而被塑件紧包住的凸模不动，这时侧型芯滑块在斜导柱的作用下开始侧抽芯，侧抽芯结束后，凸模的台肩与动模板接触。继续开模，包在凸模上的塑件随动模一起向下移动从型腔镶件中脱出，最后在推杆的作用下，推件板将塑件从凸模上脱下。在这种结构中，弹簧和顶销的作用是在刚开始分型时把推件板压靠在型腔镶件的端面，防止塑件从型腔中脱出。

斜导柱与侧滑块同时安装在定模斜导柱与滑块同时安装在定模的结构要造成两者之间的相对运动，否则就无法实现侧抽芯动作。要实现两者之间的相对运动，就必须在定模部分增加一个分型面，因此就需要用顺序分型机构。

图所示为采用弹簧式顺序分型机构的形式，开模时，动模部分向下移动，在弹簧的作用下，分型面首先分型，主流道凝料从主流道衬套中脱出，分型的同时，在斜导柱的作用下侧型芯滑块开始侧向抽芯，侧向抽芯动作完成后，定距螺钉的端部与定模板接触，面分型结束。动模部分继续向下移动，面分型开始分型，塑件包在凸模上脱离定模板，最后在推杆的作用下，推件板将塑件从凸模上脱下。在采用这种结构形式时，必须注意弹簧应该有足够的弹力以满足分型侧抽芯时开模力的需要。

图所示为采用摆钩式顺序分型机构的形式，合模时，在弹簧的作用下用转轴固
图 6.26 斜导柱与滑块同在定模的结构之一

1—侧型芯滑块 2—斜导柱 3—凸模 4—推件板 5—定距螺钉 6—转轴 7—弹簧 8—摆钩 9—压块 10—定模板 11—动模板 12—挡块 13—推杆

图 6.27 斜导柱侧抽芯机构应用形式

1—侧型芯滑块 2—斜导柱 3—凸模 4—推件板 5—定距螺钉 6—转轴 7—弹簧 8—摆钩 9—压块 10—定模板 11—动模板 12—挡块 13—推杆
6.3.4

以上介绍的两种顺序分型机构，除了应用于斜导柱与滑块同时安装在定模形式的模具外，只要分型距离足以满足点浇口浇注系统凝料的取出，就可用于点浇口浇注系统的三板式模具。

斜导柱与侧滑块同时安装在动模时，一般可以通过推出机构来实现斜导柱与侧型芯滑块的相对运动。如图所示，侧型芯滑块安装在推件板的导滑槽内，合模时靠设置在定模板上的楔紧块锁紧。开模时，侧型芯滑块和斜导柱一起随动模部分下移和定模分开，当推出机构开始工作时，推杆推动推件板使塑件脱模的同时，滑块在斜导柱的作用下在推件板的导滑槽内向两侧滑动而侧抽芯。这种结构的模具，由于侧型芯滑块始终不脱离斜导柱，所以不需设置滑块定位装置。造成斜导柱与滑块相对运动的推出机构一般只是推件板推出机构，因此，这种结构形式主要适合于抽芯力和抽芯距均不太大的场合。

图—斜导柱与滑块同在动模的结构

—动模板；

—推杆；

—凸模

图—斜导柱的内侧抽芯

—定模板；

—斜导柱；

—侧型芯滑块；

—凸模；

—推杆；

—动模板

设计这类模具时，由于缺少斜导柱从滑块中抽出时的滑块定位装置，因此要求将滑块设置在模具的上方，利用滑块的重力定位。

6.3.5
6.4 其他类型的侧抽芯注射模

6.4.1 其他类型的侧抽芯注射模

1. 其他类型的侧抽芯注射模

弯销侧抽芯机构的工作原理和斜导柱侧抽芯机构相似，所不同的是在结构上以矩形截面的弯销代替了斜导柱，因此，弯销侧抽芯机构仍然离不开滑块的导滑、注射时侧型芯的锁紧和侧抽芯结束时滑块的定位这三大设计要素。

图所示是弯销侧抽芯的典型结构，合模时，由楔紧块或挡块将侧型芯滑块通过弯销锁紧。侧抽芯时，侧型芯滑块在弯销的驱动下在动模板的导滑槽侧抽芯，抽芯结束，侧型芯滑块由弹簧、顶销装置定位。

图弯销侧抽芯机构—挡块；*—定模板；&—楔紧块；—弯销；(—侧型芯滑块；$—动模板

弯销侧抽芯机构的结构特点

通常，弯销及其导滑孔的制造困难一些，但弯销侧抽芯也有斜导柱所不及的优点，现介绍弯销侧抽芯机构的结构特点。

(1) 强度高，可采用较大的倾斜角

弯销一般采用矩形截面，抗弯截面系数比斜导柱大，因此抗弯强度较高，可以采用较大的倾斜角，所以在开模距相同的条件下，使用弯销可比斜导柱获得较大的抽芯距。由于弯销的抗弯强度较高，所以，在注射塑料对侧型芯总压力不大时，可在其前端设置一个支撑块，弯销本身即可对侧型芯滑块起锁紧作用，这样有利于简化模具结构，但在熔料对侧型芯总压力比较大时，仍应考虑设置楔紧块，用来锁紧弯销或直接锁紧滑块。

(2) 可以延时抽芯

由于塑件的特殊或模具结构的需要，弯销还可以延时侧抽芯。如图所示，弯销的工作面与侧型芯滑块的斜面可设计成离开一段较长的距离，这样根据需要，在开模分型时，弯销可暂不工作，直至接触滑块，侧抽芯才开始。

弯销在模具上的安装方式

弯销在模具上可安装在模外，也可安装在模内，但一般以安装在模外为多，这样装配时方便可见。

(1) 模外安装

图所示为弯销安装在模外的结构，塑件的下面外侧由侧型芯滑块成形，滑块抽芯结束时的定位由固定在动模板上的挡块完成，固定在定模座板上的止动销，在合模状态时对侧型芯滑块起锁紧作用，止动销的斜角（锥度的一半）应大于弯销倾斜角，如图
弯销安装在模外的优点是，在安装配合时人们能够看得清楚，便于安装时操作。

图弯销延时抽芯

图弯销在模外的结构

模内安装弯销安装在模内时，还可以进行内侧抽芯，如图所示。在该图中，塑件内壁有侧凹，模具采用摆钩式顺序分型机构。组合凸模、弯销、导柱均用螺钉固定于动模垫板。开模时，由于摆钩钩住定模板上的挡块，使分型面首先分型；接着弯销的右侧斜面驱动侧分型与抽芯注射模。
动侧型芯滑块

向右移动进行内侧抽芯;内侧抽芯结束后，摆钩在滚轮的作用下脱钩。

分型面分型；最后推出机构开始工作，推件板在推杆的推动下将塑件脱出组合凸模。

合模时，弯销的左侧驱动侧型芯滑块复位，摆钩的头部斜面越过挡块，在弹簧的作用下将其钩住。

这种形式的内侧抽芯，由于抽芯结束时，弯销的端部仍留在滑块中，所以设计时不需用滑块定位装置。另外，由于不便于设置锁紧装置，而是依靠弯销本身弯曲强度来克服注射时熔料对侧型芯的侧向压力，所以只适于侧型芯截面积比较小的场合，同时，还应适当增大弯销的截面积。

斜导槽侧抽芯机构

斜导槽侧抽芯机构是由固定于模外的斜导槽板与固定于侧型芯滑块上的圆柱销连接所形成的，如图所示。斜导槽板用四个螺钉和两个销钉安装在定模外侧，开模时，侧型芯滑块的侧向移动是受固定在它上面的圆柱销在斜导槽内的运动轨迹所限制的。当槽与开模方向没有斜度时，滑块无侧抽芯动作；当槽与开模方向成一角度时，滑块可以侧抽芯，当槽与开模方向角度越大，侧抽芯的速度越大，槽愈长，侧抽芯的抽芯距也就愈大。由此可以看出，斜导槽侧抽芯机构设计时比较灵活。

斜导槽侧抽芯机构抽芯动作的整个过程，实际是受斜导槽的形状所控制的。图所示为斜导槽板的三种不同形式。图所示的形式，开模一开始便开始侧抽芯，但这时斜导槽倾斜角应小于。图所示的形式，开模后，滑销先在直槽内运动，因此有一段延时抽芯动作，直至滑销进入斜槽部分，侧抽芯才开始。图所示的形式，先在倾斜角较小的斜导槽内侧抽芯，然后进入倾斜角较大的斜导槽内侧抽芯，这种形式适于抽芯距较大的场合。由于起始抽芯力较大，第一段的倾斜角——

其他类型的侧抽芯注射模

6. 4. 2
斜导槽侧抽芯机构

在设计时应充分注意斜导槽侧抽芯机构同样具有滑块驱动时的导滑、注射时的锁紧和侧抽芯结束时的定位功能。斜导槽的形状

在图中，第一段抽芯距为\(S_1\)，第二段抽芯距为\(S_2\)，总的抽芯距为\(S\)，斜导槽的宽度一般比圆柱销大。在图中，第一段抽芯距为\(S_1\)，第二段抽芯距为\(S_2\)，总的抽芯距为\(S\)，斜导槽的宽度一般比圆柱销大。
斜导槽板与滑销通常用T8、T10、T12等材料制造，热处理要求与斜导柱相同，一般硬度HRC≥55，表面粗糙度值Ra≤0.8 μm。

6.4.3 斜滑块侧抽芯机构

1. 斜滑块侧分型与抽芯机构的工作原理及其类型

当塑件的侧凹较浅，所需的抽芯距不大，但侧凹的成形面积较大，因而需较大的抽芯力时，可采用斜滑块机构进行侧分型与抽芯。斜滑块侧分型与抽芯机构（也简称斜滑块侧抽芯机构）的工作原理是利用推出机构的推力驱动斜滑块斜向运动，在塑件被推出脱模的同时由斜滑块完成侧分型与抽芯动作。通常，斜滑块侧抽芯机构要比斜导柱侧抽芯机构简单得多，一般可分为外侧抽芯和内侧抽芯两种。

（1）斜滑块外侧抽芯机构

图-38为斜滑块外侧分型的示例，该塑件为线圈骨架，外侧常有深度浅但面积大的侧凹，斜滑块设计成对开式（分断式）凹模镶块，即型腔有两个斜滑块组成。开模后，塑件包在动模型芯上和斜滑块一起随动模部分一起向左移动，在推杆的作用下，斜滑块相对向右运动的同时向两侧分型，分型的动作靠斜滑块在模套的导滑槽内进行斜向运动来实现，导滑槽的方向与斜滑块的斜面平行。斜滑块侧分型的同时，塑件从动模型芯上脱出。限位螺钉是防止斜滑块从模套中脱出而设置的。

图-39为斜滑块外侧分型机构图：

1—模套；2—斜滑块；3—推杆；4—定模型芯；5—动模型芯；6—限位螺钉；7—动模型芯固定板

（2）斜滑块内侧抽芯机构

图-39是斜滑块内侧抽芯机构的示例。滑块型芯的上端为侧向型芯，它安装在型芯固定板的斜孔中，开模后，推杆推动滑块型芯向上运动，由于型芯固定板上的斜孔作用，斜滑块同时还向内侧移动，从而在推杆推出塑件的同时，滑块型芯完成内侧抽芯的动作。

斜滑块的导滑形式

斜滑块的导滑形式如图-40所示，图3-42图4-2四种形式中斜滑块均没有镶入。图3所示为整体式导滑槽，常称半圆形导滑，加工精度不易保证，又不能热处理，但结构·
斜滑块的内侧分型机构

图中的斜滑块的导滑形式较紧凑，故适宜应用于小型或批量不大的模具，其中半圆形也可制成方形，成为斜的梯形槽。

图所示为镶拼式，常称镶块导滑或分模楔导滑，导滑部分和分模楔都单独制造后镶入模框，这样就可进行热处理和磨削加工，从而提高了精度和耐磨性。分模楔的位置要有良好的定位，所以用圆柱销连接，为了提高精度，在分模楔上增加销套。

图所示是用斜向镶入的导柱做导轨，也称圆柱销导滑，因滑块与模套可以同时加工所示平行度容易保证，但应注意导柱的斜角要小于模套的斜角。
图27所示是燕尾式导滑，主要用于小模具多滑块的情况，使模具结构紧凑，但加工较复杂。

图28所示是以圆柱孔作为斜滑块的导轨，制造方便，精度容易保证，仅用于局部抽芯的情况。

图29所示是用型芯的拼块作斜滑块的导向，在内侧抽芯时常常采用。

斜滑块侧抽芯机构设计要点

(1) 正确选择主型芯位置

主型芯位置选择恰当与否，直接关系到塑件能否顺利脱模。例如，图6.40中将主型芯设置在定模一侧，开模后，主型芯立即从塑件中抽出，然后斜滑块才能分型，所以塑件很容易在斜滑块上黏附于某处收缩值较大的部位，因此不能顺利从斜滑块中脱出，如图6.41所示。如果将主型芯位置设于动模(图6.40)，则在脱模过程中，塑件虽与主型芯松动，但侧分型时对塑件仍有限制侧向移动的作用，所以塑件不会黏附在斜滑块上，因此脱模比较顺利，如图6.41所示。

(2) 开模时斜滑块的止动

斜滑块通常设置在动模部分，并要求塑件对动模部分的包紧力大于对定模部分的包紧力。但有时因为塑件的特殊结构，定模部分的包紧力大于动模部分或者不相上下，此时，如果没有止动装置，则斜滑块在开模动作刚刚开始之时便有可能与动模产生相对运动，导致塑件损坏或滞留在定模而无法取出，为了避免这种现象发生，可设置弹簧顶销止动装置，如图6.40所示。开模后，弹簧顶销紧压斜滑块防止其与动模分离，使定模型芯先从塑件中抽出，继续开模时，塑件留在动模上，然后由推杆推动侧滑块侧分型并推出塑件。

斜滑块止动还可采用如图6.41所示的导销止动装置，即固定于定模板上的导销与斜滑块在开模

其他类型的侧抽芯注射模
开模后，在导销的约束下，斜滑块不能进行侧向运动，所以开模动作也就无法使斜滑块与动模之间产生相对运动，继续开模时，导销与斜滑块脱离接触，最后，动模的推出机构推动斜滑块侧分型并推出塑件。

由于斜滑块的强度较高，斜滑块的倾斜角可比斜导柱的倾斜角大一些，一般在$\frac{1}{2}$～$\frac{1}{3}$内选取。在同一副模具中，如果塑件各处的侧凹深浅不同，所需的斜滑块推出行程也不同，为了解决这一问题，使斜滑块运动保持一致，可将各处的斜滑块设计成不同的倾斜角。斜滑块推出模套的行程，立式模具不大于斜滑块高度的$\frac{1}{2}$，卧式模具不大于斜滑块高度的$\frac{1}{3}$，如果必须使用更大的推出距离，可使用加长斜滑块导向的方法。

为了保证斜滑块在合模时其拼合面密合，避免注射成形时产生飞边，斜滑块装配后必须使其底面离模套有0.2～0.5 mm的间隙，上面高出模套0.4～0.6 mm（应比底面的间隙略大一些为好），如图6.42所示。这样做还有利于修模，当斜滑块与导滑槽之间有磨损之后，再通过修磨斜滑块下端面，可继续保持其密合性。

6.4.4 齿轮齿条侧抽芯机构

齿轮齿条侧抽芯机构是利用传动齿条带动与齿条型芯相啮合的齿轮进行侧抽芯的机构。与斜导柱、斜滑块等侧抽芯机构相比，齿轮齿条侧抽芯机构可获得较大的抽芯力和抽芯距。根据传动齿条固定位置的不同，齿轮齿条侧抽芯机构可分为传动齿条固定于定模一侧及传动齿条固定于动模一侧两类。

这种机构不仅可以进行正侧方向和斜侧方向的抽芯，还可以作圆弧方向抽芯和螺纹抽芯，下面分别介绍。
传动齿条固定在定模一侧

图所示为传动齿条固定在定模上的侧抽芯机构。塑件上的斜孔由齿条型芯成形。开模时，固定在定模板上的传动齿条通过齿轮带动齿条型芯实现抽芯动作。开模至最终位置时，传动齿条与齿轮脱开。为了保证型芯的准确复位，型芯的最终脱离位置必须定位。弹簧销使齿轮始终保持在传动齿条的最后脱离位置上。

图传动齿条固定在定模一侧的结构

传动齿条固定在动模一侧

传动齿条固定在动模一侧的结构如图所示。传动齿条固定在专门设计的固定板上，开模时，动模部分向左移动，塑件包在齿条型芯上从型腔中脱出后随动模部分一起向左。

图传动齿条固定在动模一侧的结构
移动，主流道凝料在拉料杆作用下与塑件连在一起向左移动。当传动齿条推板与注射机上的顶杆接触时，传动齿条静止不动，动模部分继续后退，造成了齿轮作逆时针方向的转动，从而使与齿轮啮合的齿条型芯作斜侧方向抽芯。当抽芯完毕，传动齿条固定板与推板接触，并且推动推板，使推杆将塑件推出。合模时，传动齿条复位杆（使传动齿条复位。这里，传动齿条复位杆（在注射时还起到楔紧块的作用。

这类结构形式的模具特点是在工作过程中，传动齿条与齿轮始终保持着啮合关系，这样就不需要设置齿轮或齿条型芯的定位机构。

6.4.5 液压或气动侧抽芯机构

图6.46 定模部分的液压（气动）侧抽芯机构

图6.47 动模部分的液压（气动）侧抽芯机构

1—定模板；2—侧型芯；3—楔紧块；4—拉杆；5—动模板；6—连接器；7—支架；8—液压缸

液压或气动侧抽芯是通过液压缸或气缸活塞及控制系统来实现的，当塑件侧向有很深的孔，例如三通管子塑件，侧抽芯力和抽芯距很大，用斜导柱、斜滑块等侧抽芯机构无法解决时，往往优先考虑采用液压或气动侧抽芯（在有液压或气动源时）。

图6.46所示为液压缸（或气缸）固定于定模省去楔紧块的侧抽芯机构，它能完成定模部分一侧分型与抽芯注射模。
的侧抽芯工作。液压缸（或气缸）在控制系统控制下在开模前必须将侧向型芯抽出，然后再开
模，而合模结束后，液压缸（或气缸）才能驱使侧型芯复位。

图所示为液压缸（或气缸）固定于动模、具有楔紧块的侧抽芯机构，它能完成动模部
分的侧抽芯工作。开模后，当楔紧块脱离侧型芯后首先由液压缸（或气缸）抽出侧向型芯，然
后推出机构才能使塑件脱模。合模时，侧型芯由液压缸（或气缸）先复位，然后推出机构复位，
最后楔紧块锁紧。侧型芯的复位必须在推出机构复位、楔紧块锁紧之前进行。

侧分型与抽芯机构的类型？
斜导柱侧分型与抽芯机构用于什么场合？
斜导柱侧分型与抽芯机构的组成？
斜导柱侧分型与抽芯机构的抽芯距如何确定？
滑块定位装置的作用？
楔紧块的作用？
楔紧块上锁紧角的大小如何确定？
何谓干涉现象？如何避免“干涉现象”的产生？
弯销侧抽芯机构与斜导柱抽芯机构在结构上有何区别？

线圈骨架注射模的设计，如题
图所示为某塑料厂生产的塑料线圈芯体，尺寸如
图，材质为，采用塑料精度
级，生产批量万件。试设计线圈骨架注射模。
第7章

7.1 压缩模与压注模

7.1.1 压缩模结构及分类

1. 压缩模的典型结构及组成

典型的压缩模结构如图所示，它可分为固定于压机上压板的上模和下压板的下模两大部分。

2. 压缩模的组成

压缩模具由以下几部分组成。

(1) 型腔
型腔是直接成形塑件的部位，加料时与加料室一道起装料的作用，图中的模具型腔由上凸模、下凸模、型芯(和凹模)等构成。

(2) 加料室
图中的加料室为凹模的上半部，图中为凹模端面尺寸扩大的部分，由于塑料原料与塑件相比具有较大的比容，塑件成形前单靠型腔往往无法容纳全部原料，因此在型腔之上设有一段加料腔。

(3) 导向机构
图中由布置在模具上周边的四根导柱和导套组成。导向机构用来保证上下模合模的对中性。为了保证推出机构上下运动平稳，该模具在下模座板上设有二根推板导柱，在推板上还设有推板导套。

(4) 侧向分型抽芯机构
在成形带有侧向凹凸或侧孔的塑件时，模具必须设有各种侧分型抽芯机构，塑件方能抽出。图中的塑件有一侧孔，在推出之前用手动丝杠(侧型芯)抽出侧型芯。

(5) 脱模机构
固定式压缩模在模具上必须有脱模机构(推出机构)，图中的脱模机构由推板、推杆固定板(、推杆等零件组成。

(6) 加热系统
热固性塑料压缩成形需在较高的温度下进行，因此模具必须加热。常见的加热方式有电加热系统。
7.1 压缩模结构及分类

图7.1 压缩模结构

压缩模的工作原理

压缩模的工作原理如图7.1所示。开模后，将配好的塑料原料倒入凹模上端的加料室，上下模闭合使装于加料室和型腔中的塑料受热受压，成为熔融态充满整个型腔，当塑件固化成形后，上下模打开利用顶出装置顶出塑件。

压缩模的分类

按模具在压机上的固定方式分类

(1) 移动式压缩模

移动式压缩模如图7.2所示。模具不固定在压机上，成形后将模具移出压机，先抽出侧型芯，再取出塑件。在清理加料室后，将模具重新组合好，然后放入压机内再进行下一个循环的压缩成形。这种压缩模结构简单，制造周期短。但因加料、开模、取件等工序均手工操作，模具易磨损。
移动式压缩模（—凸模; —凸模固定板; —凹模; —型支架）

半固定式压缩模 如图所示。开合模在机内进行, 一般将上模固定在压机上, 下模可沿导轨移动, 用定位块定位, 合模时靠导向机构定位。也可按需要采用下模固定的形式, 工作时则移出上模, 用手工取件或卸模架取件。该结构便于放嵌件和加料, 用于小批量生产减小劳动强度。

固定式压缩模 如图所示。上下模都固定在压机上, 开模、合模、脱模等工序均在压机内进行, 生产效率高, 操作简单, 劳动强度小, 开模振动小, 模具寿命长。但其结构复杂, 成本高, 且安放嵌件不方便。适用于成形批量较大或形状较大的塑件。

按模具加料室的形式分类（）

溢式压缩模（溢式压缩模又称敞开式压缩模, 如图所示。这种模具无加料室, 型腔即可加料, 型腔的高度基本上就是塑件的高度。型腔闭合面形成水平方向的环形挤压边, 以减薄塑件飞边。压塑时多余的塑料极易沿着挤压边溢出, 使塑料具有水平方向的毛边。模具的凸模与凹模无配合部分, 完全靠导柱定位, 仅在最后闭合后凸模与凹模才完全密合。压缩时压机的压力不能全部传给塑料。模具闭合较快, 会造成溢料量的增加, 既造成原料的浪费, 又降低了塑件密度, 强度不高。溢式模具结构简单, 造价低廉、耐用(凸凹模间无摩擦), 塑件易取出, 通常可用压缩空气吹出塑件。对加料量的精度要求不高, 加料量一般稍大于塑件质量的20 kg。}

图 7.2
1—2—3—4—

图 7.3
1—2—3—4—5—
不溢式压缩模又称封闭式压缩模，如图所示。这种模具有加料室，其断面形状与型腔完全相同，加料室是型腔上部的延续。没有挤压边，但凸模与凹模有高度不大的间隙配合，一般每边间隙值约为0.075 mm左右，压制时多余的塑料沿着配合间隙溢出，使塑件形成垂直方向的毛边。模具闭合后，凸模与凹模即形成完全密闭的型腔，压制时压机的压力几乎能完全传给塑料。

不溢式压缩模的特点：

1. 塑件承受压力大，故密实性好，强度高。
2. 不溢式压缩模由于塑料的溢出量极少，因此加料量的多少直接影响着塑件的高度尺寸，每模加料都必须准确称量，所以塑件高度尺寸不易保证，因此流动性好容易按体积计量的塑料一般不采用不溢式压缩模。
3. 凸模与加料室侧壁摩擦，不可避免地会擦伤加料室侧壁，同时，加料室的截面尺寸与型腔截面相同，在顶出时带有伤痕的加料室会损伤塑件外表面。
4. 不溢式压缩模必须设置推出装置，否则塑件很难取出。
5. 不溢式压缩模一般不应设计成多腔模，因为加料不均衡就会造成各型腔压力不等，而引起一些制件欠压。

不溢式压缩模适用于成形形状复杂、壁薄和深形塑件，也适用于成形流动性特别小、单位比压高和比容大的塑料。例如用它成形棉布、玻璃布或长纤维填充的塑料制件效果好，这不单因为这些塑料流动性差，要求单位压力高，而且若采用溢式压缩模成形，当布片或纤维填料进入挤压面时，不易被模具夹断而妨碍模具闭合，造成飞边增厚和塑件尺寸不准，去除困难。而不溢式压缩模没有挤压面，所得的飞边不但极薄，而且飞边在塑件上呈垂直分布，去除比较容易，可以用平磨等方法去除。

半溢式压缩模又称为半封闭式压缩模，如图所示。这种模具具有加料室，但其断面尺寸大于型腔尺寸。凸模与加料室呈间隙配合，加料室与型腔的分界处有一环形挤压面，其宽度约为0.075 mm。
挤压边可限制凸模的下压行程，并保证塑件的水平方向毛边很薄。

半溢式压缩模的特点：
1. 模具使用寿命较长。因加料室的断面尺寸比型腔大，故在顶出时塑件表面不受损伤。
2. 塑料的加料量不必严格控制，因为多余的塑料可通过配合间隙或在凸模上开设的溢料槽排出。
3. 塑件的密度和强度较高，塑件径向尺寸和高度尺寸的精度也容易保证。
4. 简化加工工艺。当塑件外形复杂时，若用不溢式压塑模必须造成凸模与加料室的制造困难，而采用半溢式压塑模则可将凸模与加料室周边配合面简化。
5. 半溢式压缩模由于有挤压边缘，在操作时要随时注意清除落在挤压边缘上的废料，以免此处过早地损坏和破裂。

由于半溢式压缩模兼有溢式压缩模和不溢式压缩模的特点，因而被广泛用来成形流动性较好的塑料及形状比较复杂、带有小型嵌件的塑件，且各种压制场合均适用。

7.1.3 压缩模与压机的关系

压机是压缩成形的主要设备，压缩模设计者必须熟悉压机的主要技术性能，特别是压机的最大工作能力和装模部分有关尺寸等，否则模具无法安装在压机上或塑件不能取出。模具所要求的压制能力与压机本身的能力应相符合，如压制能力不足，则生产不出合格塑件，反之又会造成设备生产能力的浪费。

在设计压模时，应首先对压机做下述几方面的校核计算。

成形压力的校核
成形压力是指塑料压塑成形时所需的压力。它与塑件几何形状、水平投影面积、成形工艺等因素有关，成形压力必须满足下式

$$ F_M \leq K F_p $$

式中 F_M———用模具成形塑件所需的成形总压力，单位为 N；F_p———压机的公称压力，单位为 N；K———修正系数，一般取0.75~0.9，视压机新旧程度而定。

$$ F_M = 10^6 n A p $$

式中 n———型腔数目；A———每一型腔加料室的水平投影面积，单位为 m^2；p———塑料压缩成形时所需的单位压力，单位为 MPa。
开模力和脱模力的校核

开模力的计算

开模力可按下式计算

\[F_k = K_1 F_M \]

式中

- \(F_k \) ——开模力,
- \(K_1 \) ——系数,塑件形状简单、配合环(凸模与凹模相配合部分)不高时取\(0.1 \),配合环较高时取\(0.2 \),形状复杂配合环较高时取\(0.25 \)。

用机器力开模,因\(F_k \)足够,所以不需要校核。

脱模力的计算

脱模力是将塑件从模具中顶出的力,必须满足

\[F_d > F_t \]

式中

- \(F_d \) ——压机的顶出力,
- \(F_t \) ——塑件从模具内脱出所需的力。

脱模力的计算公式如下

\[F_t = 10^6 A_e P_j \]

式中

- \(A_e \) ——塑件侧面积之和,\text{mm}^2
- \(P_j \) ——MPa

<table>
<thead>
<tr>
<th>(P_j)</th>
<th>0.49</th>
<th>1.47</th>
</tr>
</thead>
</table>

压缩模高度和开模行程的校核

为使模具正常工作,就必须使模具的闭合高度和开模行程与液压机上下工作台面之间的最大和最小开距以及活动压板的工作行程相适应,即

\[h_{\text{min}} \leq h < h_{\text{max}} \]

\[h = h_1 + h_2 \]

式中

- \(h_{\text{min}} \) ——压机上下模板之间的最小距离,\text{mm}
- \(h_{\text{max}} \) ——压机上下模板之间的最大距离,\text{mm}
- \(h \) ——合模高度,\text{mm}
- \(h_1 \) ——凹模的高度,\text{mm}
- \(h_2 \) ——凸模台肩高度,\text{mm}

"图7-3" 模具高度和开模行程

"图7-4" 模具结构及分类
如果上下模不能闭合，压机无法工作，这时在上下压板间必须加垫板，以保证垫板厚度。

除满足外，还要求大于模具的闭合高度加开模行程之和，如图所示，以保证顺利脱模。即

\[h_{\text{max}} \geq h + L \]
\[L = h_s + h_t \]

式中
- \(h \) ——塑件高度，\(h_s \); 为上模高度，\(h_t \);
- \(L \) ——模具最小开模距，\(h_s \)。

图5 塑件高度与压机顶出行程

压机顶出机构的校核

固定式压模一般均利用压机工作台面下的顶出机构（机械式或液压式）驱动模具脱模机构进行工作，因此压机的顶出机构与模具的脱模两者的尺寸应相适应，即模具所需的脱模行程必须小于压机顶出机构的最大工作行程，其中，模具需用的脱模行程

一般应保证塑件脱模时

\[h_{\text{max}} \geq h + h_s + h_t \]

10 ~ 30

4.

15 ~ 30 mm

5.
高出凹模型腔，以便将塑件取出，图所示即为塑件高度与压机顶出行程的尺寸关系图。顶出距离必须满足

\[L_d = h_s + h_3 \leq 10 \sim 15 \text{mm} \]

式中

- \(L_d \) ——压缩模需要的脱模行程，mm
- \(h_s \) ——塑件的最大高度，mm
- \(h_3 \) ——加料腔高度，mm
- \(L_p \) ——压机推顶机构的最大行程，mm

7.2 压注模结构及分类

7.2.1 压注成形的一般过程

压注成形的一般过程是，先闭合模具，然后将塑料加入模具加料室内，使其受热成熔融状态，
在与加料室配合的压料柱塞的作用下，使熔料通过设在加料室底部的浇注系统高速挤入型
腔。塑料在型腔内继续受热受压而发生交联反应并固化成形。然后打开模具取出塑件，清理加
料室和浇注系统后进行下一次成形。

压注成形和压缩成形都是热固性塑料常用的成形方法。压注模与压缩模的最大区别在于前者设有单独的加料室。

7.2.2 压注模的结构

图所示为典型的固定式压注模，由压柱、上模、下模三部分组成，打开上分型面
面取出主流道凝料并清理加料室；打开下分型面
面取出塑件和分流道凝料。

1. [图示] 压注模的结构

- 1 ——上模座板；
- 2 ——压柱；
- 3 ——加料室；
- 4 ——浇口套；
- 5 ——型芯；
- 6 ——推杆；
- 7 ——垫块；
- 8 ——推板；
- 9 ——下模板；
- 10 ——上模板；
- 11 ——复位杆；
- 12 ——拉杆；
- 13 ——支承板；
- 14 ——拉钩；
- 15 ——下模座板；
- 16 ——定距导柱；
- 17 ——加热器安装孔

7.3 压注模的分类

7.3.1 固定式压注模

固定式压注模的特点是模具结构简单，制造方便，但模具的装卸比较麻烦。

7.3.2 可分型式压注模

可分型式压注模的特点是模具结构较为复杂，制造较困难，但模具的装卸较为方便。
压注模的组成

压注模由以下几部分组成:

(1) 型腔
成形塑件的部分,由凸模、凹模、型芯等组成(图中 X、Y), 分型面的形式及选择与注射模、压缩模相似。

(2) 加料室
由加料室(和压柱)组成, 移动式压注模的加料室和模具本体是可分离的, 开模前先取下加料室, 然后开模取出塑件。固定式压注模的加料室是在上模部分, 加料时可以与压柱部分定距分型。

(3) 浇注系统
多型腔压注模的浇注系统与注射模相似, 同样分为主流道、分流道和浇口, 单型腔压注模一般只有主流道。与注射模不同的是加料室底部可开设几个流道同时进入型腔。

(4) 导向机构
一般由导柱和导柱孔(或导套)组成。在柱塞和加料室之间, 型腔分型面之间, 都应设导向机构。

(5) 侧分型与抽芯机构
压注模的侧向分型抽芯机构与压缩模和注射模基本相同。

(6) 脱模机构
由推杆、推板、复位杆等组成, 由拉钩、定距导柱、可调拉杆等组成的两次分型机构是为了加料室分型面和塑件分型面先后打开而设计的, 也包括在脱模机构之内。

(7) 加热系统
固定式压注模由压柱、上模、下模三部分组成, 应分别对这三部分加热, 如图中所示, 在加料室和型腔周围分别钻有加热孔, 插入电加热元件。移动式压注模加热是利用装于压机上的上、下加热板, 压注前柱塞、加料室和压注模都应放在加热板上进行加热。

2. 压注模的工作原理
如图所示, 为一固定式罐式压注模。模具上设有加热装置。压柱随上模板固定于压机的上工作台, 下模固定于压机的下工作台。开模时, 压机上工作台带动上模座板上升, 压柱离开加料室, ——分型面分型, 以便在该处取出主流道凝料。当上模上升到一定高度时, 拉杆上的螺母迫使拉钩转动使之与下模部分脱开, 接着定距导柱起作用, 使——分型面分型, 以便脱模机构将塑件从该分型面处脱出。合模时, 复位杆使脱模机构复位, 拉钩靠自重将下模部分锁住。

3. 压注模的分类
压注模按其固定方式分为移动式压注模和固定式压注模, 移动式压注模在小型塑件生产中有着广泛的应用; 压注模按其加料室的特征又可分为罐式压注模和柱塞式压注模, 罐式压注模用普通压机即可成形, 柱塞式压注模需用专用压机成形。压注模按型腔数目可分为单型腔和多型腔。
移动式罐式压注模的加料室与模具本体是可以分离的。模具闭合后放上加料室，将定量的塑料加入加料室内，利用压机的压力，通过压柱将塑化的物料高速挤入型腔，硬化定型后，开模时先从模具上取下加料室，再分别进行清理和脱出塑件，用手工或专用工具。

图所示为一固定式罐式压注模。柱塞式压注模没有主流道，主流道已扩大成为圆柱形的加料室，这时柱塞将物料压入型腔的力已起不到锁模的作用，因此柱塞式压注模应安装在特殊的专用压机上使用，锁模和成形需要两个液压缸来完成。由于没有主流道的加热作用，因此最好采用经过预热的原料进行压注。这时既没有主流道的流动阻力，同时原料经预热后压注的压力可大大降低，特别是单型腔的压注模更是如此。

柱塞式压注模分为上加料室柱塞式压注模和下加料室柱塞式压注模。
模；成形用液压缸（称辅助液压缸）在压机的上方，自上而下将物料挤入模腔。如图所示，合模加料后，当加入加料室内的塑料受热成熔融状时，压机辅助液压缸工作，柱塞将熔融物料挤入型腔，固化成形后，辅助液压缸带动柱塞上移，主液压缸带动工作台将模具下模部分下移开模，塑件与浇注系统留在下模。顶出机构工作时，推杆将塑件从型腔中推出。

下加料室柱塞式压注模
如图所示，这种模具所用压机合模液压缸（称主液压缸）在压机的上方，自上而下合模；成形用液压缸（称辅助液压缸）在压机的下方，自下而上将物料挤入模腔。它与上加料室柱塞式压注模的主要区别在于：它是先加料，后合模，最后压注；而上加料室柱塞式压注模是先合模，后加料，最后压注。

压注模成形零件设计
压注模的结构包括型腔、加料室、浇注系统、导向机构、侧抽芯机构、推出机构、加热系统等七部分，压注模的结构设计原则与注射模、压缩模基本相似。压注模零部件的设计也与注射模、压缩模基本相似，在此不再赘述，本节只介绍压注模特有的结构零件的设计。

加料室的结构
压注模与注射模不同之处在于它有加料室。压注成形之前塑料必须加入到加料室内，进行预热、加压，才能压柱成形。由于压注模的结构不同，所以加料室的形式也不相同。固定式压注模和移动式压注模的加料室具有不同的形式，罐式和柱塞式的加料室也具有不同的形式。

移动式压注模加料室的结构
加料室断面形状常见的有圆形和矩形，应由制品断面形状决定，例如圆形塑件采用圆形断面加料室。多腔模具的加料室断面，一般应尽可能盖住所有模具的型腔，因而常采用矩形断面。

固定式压注模加料室
固定式压注模的加料室与上模连成一体，在加料室底部开设一个或数个流道通向型腔，即图所示的加料室通过四个流道流向型腔。当加料室和上模分别加工在两块板上时可在通向型腔的流道内加一主流道衬套。

移动式压注模加料室
移动式压注模加料室可单独取下，并有一定的通用性，如图所示。加料室底部为一带有圆角的台阶，其作用在于当压柱向加料室内的塑料加压时，压力也作用在台阶上，从而将加料室紧紧地压在模具的模板上，以免塑料从加料室的底部溢出。加料室在模具上的定位方式如图和图所示。

1. 无定位的加料室，这种
7.3 压注模成形零件设计

结构的上模上表面和加料室下表面均为平面,制造简单,清理方便,使用时目测加料室基本在模具中心即可。图中加料室下部直接开设浇注系统;图中的导柱用于定位加料室,这种结构中,导柱即可固定在上模也可固定在下模(图中固定在上模),其呈间隙配合一端应采用较大间隙。这种结构拆卸和清理不太方便;图中采用外形销定位,这种结构加工及使用都较方便;图中采用加料室内部凸台定位,这种结构可以减少溢料的可能性,因此得到广泛的应用。

移动式压注模加料室的定位

柱塞式压注模加料室的截面均为圆形。柱塞式压注模加料室在模具上的安装方式如图和图所示。由于采用专用液压机,液压机上有锁模液压缸,所以加料室的截面尺寸与锁模无关,加料室的截面尺寸较小,高度较大。

加料室的材料一般选用 T10A、CrWMn、Cr12、52~56 HRC。内腔最好镀铬且抛光至 Ra ≤ 0.4 μm ≤ 0.4 μm。

7.3.2

1.
2. 移动式压注模压柱的结构

图所示为罐式压注模几种常见的压柱结构。图中为简单的圆柱形,加工简便省料,常用于移动式压注模;图中为带凸缘的结构,承压面积大,压注平稳,移动式和固定式罐式压注模都能应用;图中为组合式结构,用于固定式模具,以便固定在压机上;图中在压柱上开环形槽,在压注时,环形槽被溢出的塑料充满并固化在其中,继续使用时起到了活塞环的作用,可以阻止塑料从间隙中溢出。
图中在柱塞上加工出环形槽以便溢出的料固化其中起活塞环的作用，图中头部的球形凹面有使料流集中、减少向侧面溢料的作用。

图所示罐式压注模的压柱结构。

图柱塞式压注模压柱结构。

如图所示，压柱头部开有楔形沟槽的结构，其作用是为了拉出主流道凝料。图用于直径较小的压柱；图用于直径大于的压柱；图用于拉出几个主流道凝料的场合。

压柱或柱塞是承受压力的主要零件，压注材料和热处理要求与加料室相同。

加料室与压柱的配合关系如图所示，具体原则为。

7.3.3
加料室与压柱的配合通常为

或采用的单边间隙。若为带环槽的压柱，间隙可更大些。

压柱的高度应比加料室的高度小，底部转角处应留的储料间隙。

加料室与定位凸台的配合高度之差为，加料室底部倾角。

表为罐式压注模的加料室、压柱的推荐尺寸。

<table>
<thead>
<tr>
<th>D</th>
<th>d</th>
<th>d₁</th>
<th>h</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30°0.033</td>
<td>24°0.033</td>
<td>3°0.05</td>
<td>30 ± 0.2</td>
</tr>
<tr>
<td>120</td>
<td>50°0.039</td>
<td>42°0.039</td>
<td>4°0.05</td>
<td>40 ± 0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>d</th>
<th>d₁</th>
<th>h</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30°0.025</td>
<td>23°0.072</td>
<td>26.5 ± 0.1</td>
<td>20</td>
</tr>
<tr>
<td>120</td>
<td>50°0.025</td>
<td>41°0.087</td>
<td>35.5 ± 0.1</td>
<td>30</td>
</tr>
</tbody>
</table>
可从传热和锁模两个方面考虑。

从传热方面考虑。加料室的加热面积取决于加料量，根据经验，未经预热的热固性塑料每克约

\[\frac{A}{m} \approx 10\% - 25\% \]

的加热面积，加料室总表面积为加料室内腔投影面积的两倍与加料室装料部分侧壁面积之和。为了简便起见，可将侧壁面积略去不计，这样比较安全，因此，加料室截面积为

\[A = \frac{1.4m}{2} \]

式中

\[A \quad \text{———加料室截面积} \]

\[m \quad \text{———每一次压注的加料量} \]

从锁模方面考虑。加料室截面积应大于型腔和浇注系统在合模方向投影面积之和，否则型腔内塑料熔体的压力将顶开分型面而溢料。根据经验，加料室截面积必须比塑件型腔与浇注系统投影面积之和大

\[A > 1.1 - 1.25A_1 \]

式中

\[A_1 \quad \text{———} \]

\[\text{塑件型腔和浇注系统在合模方向上的投影面积之和} \]

对于未经预热的塑料，可采用式（7-13）计算加料室截面积；对于经过预热的塑料，可按

\[\frac{A'}{A} = p' \geq p \]

式中

\[p' \quad \text{———} \]

\[p \quad \text{———} \]

\[A \leq 10^{-2} \frac{F_p}{p} \]

\[F_p \quad \text{———} \]

\[p' \quad \text{———} \]

\[p \quad \text{———} \]

当压机已确定时，应根据所选用的塑料品种和加料室截面积对加料室内的单位挤压力进行校核

\[\frac{F_p}{A} = p' \geq p \]

式中

\[F_p \quad \text{———} \]

\[A \quad \text{———} \]

\[\text{不同塑料所需单位挤压力} \]

其值可按表选用。

表7-1

<table>
<thead>
<tr>
<th>塑 料 名 称</th>
<th>填 料 所需单位压力</th>
</tr>
</thead>
<tbody>
<tr>
<td>酚醛塑料</td>
<td>50 - 70</td>
</tr>
<tr>
<td>木粉</td>
<td>80 - 100</td>
</tr>
<tr>
<td>玻璃纤维</td>
<td>70 - 80</td>
</tr>
<tr>
<td>布屑</td>
<td>80 - 100</td>
</tr>
<tr>
<td>三聚氰胺 矿物</td>
<td>4 - 100</td>
</tr>
<tr>
<td>石棉</td>
<td>7 - 10</td>
</tr>
<tr>
<td>环氧树脂</td>
<td>6 - 8</td>
</tr>
<tr>
<td>硅酮树脂</td>
<td>4 - 100</td>
</tr>
<tr>
<td>氨基塑料</td>
<td>7 - 10</td>
</tr>
</tbody>
</table>

· 256·
确定加料室中塑料所占有的容积

加料室截面积确定后，其余尺寸的计算方法与压塑模相似。加料室内塑料所占有的容积由下式计算

\[V_{sl} = \kappa V_s \]

式中

\[V_{sl} \] —— 粉状塑料的体积，单位为 cm³；

\[\kappa \] —— 压缩比；

\[V_s \] —— 塑件的体积，单位为 cm³。

确定加料室高度

加料室高度可按下式计算

\[h = \frac{V_{sl}}{A} \times 0.8 \sim 1.5 \text{ cm} \]

式中

\[h \] —— 加料室的高度，单位为 cm。

7.4 浇注系统设计

压注模浇注系统的组成与注射模相似，各组成部分的作用也与注射模相类似。如图所示为一压注模的典型浇注系统。

设计压注模浇注系统时应注意以下几点：

1. 浇注系统总长（包括主流道、分流道、浇口）不应超过 3-5 cm，流道应平直圆滑，尽量避免弯折（尤其对增强塑料更为重要），以保证塑料尽快充满型腔。

2. 主流道尽量分布在模具的压力中心。

3. 分流道截面形状宜取在相等截面积时周边为最长的形状（如梯形），有利于模具加热塑料，增大摩擦热，提高料温。

4. 浇口形状及位置应便于取除浇口，无损伤塑料表面美观，修正方便。

5. 主流道下宜设反料槽，以利于塑料流动集中。

6. 浇注系统中有拼合面者必须防止溢料，以免取出浇口困难。
在压注模中，常见的主流道有正圆锥形的、带分流锥的、倒圆锥形的等，如图所示。

图所示为正圆锥形主流道，其大端与分流道相连，常用于多型腔模具，有时也设计成直接浇口的形式，用于流动性较差的塑料的单型腔模具。主流道有6°～10°的锥度，与分流道的连接处应有半径为3 mm以上的圆弧过渡。

图所示为带分流锥的主流道，它用于塑件较大或型腔距模具中心较远时以缩短浇注系统长度，减少流动阻力及节约原料的场合。分流锥的形状及尺寸按塑件尺寸及型腔分布而定。型腔沿圆周分布时，分流锥可采用圆锥形；当型腔两排并列时，分流锥可做成矩形截锥形。分流锥与流道间隙一般取1～1.5 mm。流道可以沿分流锥整个表面分布，也可在分流锥上开槽。

图所示为倒锥形主流道。这种主流道大多用于固定式罐式压注模，与端面带楔形槽的压柱配合使用。开模时，主流道连同加料室中的残余废料由压柱带出再予清理。这种流道既可用于多型腔模具，又可使其直接与塑件相连用于单型腔模具或同一塑件有几个浇口的模具。这种主流道尤其适用于以碎布、长纤维等为填料时塑件的成形。

分流道为了达到较好的传热效果，分流道(分浇道)一般都比较浅而宽，但若过浅，会使塑料受热而早期硬化，降低其流动性。一般小型件分流道深度取2～4 mm，大型件深度取0～0.5 mm，最浅应不小于1 mm。最常采用梯形断面的分流道，其尺寸如图所示，梯形每边应有45°的斜角；也有半圆形分流道的，其半径可取1 mm。以上两种截面加工容易、受热面积大，但隅角部容易过早交联固化。圆形截面的分流道为最合理的截面，流动阻力小，但加工有些麻烦。

7. 4. 1

7. 4. 2

7. 20

7. 20a

7. 20b

7. 20c

7. 21
7.4.3 浇口

浇口是浇注系统中的重要组成部分，它与型腔直接相连，其位置形状及尺寸大小直接影响熔料的流速及流态，对塑件质量、外观及浇注系统的去除都有直接影响，因此，浇口设计应根据塑料特性、塑件形状及要求和模具结构等因素来考虑。

浇口的形式

压注模的浇口与注射模基本相同，可以参照注射模的浇口进行设计。由于热固性塑料的流动性较差，所以设计压注模浇口时，其浇口应取较大的截面尺寸。

常见的压注模的浇口形式有圆形点浇口、侧浇口、扇形浇口、环形浇口以及轮辐式浇口等。如图所示。

图(a)为侧浇口，图(b)为扇形浇口，图(c)、(d)为环形浇口。

图(a)为外侧进料的侧浇口，是侧浇口中最常用的形式；图(b)所示的塑件外表面不允许有浇口痕迹，所以用端面进料；图(c)所示的结构可保证浇口折断后，断痕不会伸出表面，不影响装配，可降低修浇口的费用；如果塑件用碎布或长纤维做填料，侧浇口应设在附加于侧壁的凸台上，这样在去除浇口时就不会损坏塑件表面，如图(d)所示；对于宽度较大的塑件可用扇形浇口，如图(e)所示。

浇口的尺寸

浇口的截面形状有圆形、半圆形及梯形等三种形式。

圆形浇口加工困难，导热性不好，去除浇口时不方便，因此圆形浇口只适用于流动性较差的塑料，浇口直径一般大于0.5～0.7 mm；半圆形浇口的导热性比圆形好，机械加工方便，但流动阻力较大，浇口较厚；梯形浇口的导热性好，机械加工方便，是最常用的浇口形式。

一般梯形浇口的深度取1.2～1.5 mm，宽度不大于2 mm。如果浇口过薄、太小，压力损失大，因此选择合理尺寸的浇口非常重要。
失就会较大，使硬化提前，造成填充成形性不好；如果浇口过厚、过大造成流速降低，易产生熔接不良、表面质量不佳等缺陷并使去除浇道困难。

根据上述情况，如果适当增厚浇口，则有利于保压补料，排除气体，降低表面粗糙度及熔接质量。所以，浇口尺寸应按塑料性能、塑件形状、尺寸、壁厚和浇口形式以及流程等因素，根据经验来确定。实际设计时一般应取较小值，经试模后再修正到适当尺寸。

常用梯形截面浇口尺寸如表7-5所示。

<table>
<thead>
<tr>
<th>进料口截面积/mm²</th>
<th>梯形截面宽/mm</th>
<th>梯形截面厚/mm</th>
<th>进料口截面积/mm²</th>
<th>梯形截面宽/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤2.5</td>
<td>5 × 0.5</td>
<td></td>
<td>>7.0～8.0</td>
<td>8 × 1</td>
</tr>
<tr>
<td>>2.5～3.5</td>
<td>5 × 0.7</td>
<td></td>
<td>>8.0～10.0</td>
<td>10 × 1</td>
</tr>
<tr>
<td>>3.5～5.0</td>
<td>7 × 0.7</td>
<td></td>
<td>>10.0～15.0</td>
<td>10 × 1.5</td>
</tr>
<tr>
<td>>5.0～7.0</td>
<td>6 × 1</td>
<td></td>
<td>>15.0～20.0</td>
<td>10 × 2</td>
</tr>
</tbody>
</table>

浇口截面经验计算法

浇口截面可用经验公式计算，但计算结果仅供参考，一般都需试模后修正确定。

流量计算法

压注时浇口截面应保证所需压入型腔的塑料容量，在内填满型腔。因此浇口尺寸与塑件大小、模具温度、单位压力有关，经一定成形条件下试验，浇口截面可按下式计算

$$ A = QGK $$

式中

- A ——浇口截面积，\(\text{cm}^2 \)
- Q ——系数，一般取0.003 56
- G ——系数，对木粉填料取
- K ——系数，对木粉、矿物填料取
- V ——系数，对木粉填料取
- F ——系数，当嵌件多、塑件形状复杂时取
- n ——为供给塑料的浇口数量

3. 浇口位置的选择

压注模浇口位置和数量的选择应遵循以下原则:

- 由于热固性塑料流动性较差，故浇口开设位置应有利于流动，一般浇口开设在塑件壁厚最大处，以减少流动阻力，并有助于补缩。
- 浇口的开设位置应避开塑件的重要表面，以不影响塑件的使用、外观及后加工工作，同时应使塑料在型腔内顺序填充，否则会卷入空气形成塑件缺陷。
- 热固性塑料在型腔内的最大流动距离应尽可能限制在内，对大型塑件应多开。

4. 浇口位置的选择

- 1
- 2
- 3
7.4 浇注系统设计

4. 设几个浇口以减小流动距离。这时浇口间距应不大于\(\frac{3}{4} \)英寸，否则在两股料流汇合处，由于物料硬化而不能牢固地熔合；

(1) 热固性塑料在流动中会产生填料定向作用，造成塑件变形、翘曲甚至开裂。特别是长纤维填充的塑件，其定向更为严重，故应注意浇口位置。例如对于长条形塑件，当浇口开设在长条中点时会引起长条弯曲，而改在端部进料较好。圆筒形塑件单边进料易引起塑件变形，改为环状浇口较好。

溢料槽和排气槽

成形时为防止产生熔接痕或使多余料溢出，以避免嵌件及模具配合中渗入更多塑料，有时需要在产生熔接痕的地方及其他位置开设溢料槽。

溢料槽尺寸应适当，过大则溢料多，使塑件组织疏松或缺料，过小时溢料不足，最适宜的时机应为塑料经保压一段时间后才开始将料溢出，一般溢料槽宽取\(\frac{3}{4} \)英寸，深\(\frac{1}{4} \)英寸。制作时宜先取薄，经试模后再修正。

压注成形时，由于在极短时间内需将充满型腔，不但需将型腔内气体迅速排出模外，而且需要排除由于聚合作用产生的一部分低分子（气体），因此，不能仅依靠分型面和推杆的间隙排气，还需开设排气槽。

压注成形时从排气槽中不仅逸出气体，还可能溢出少量前锋冷料，因此需要附加工序去除，但这样有利于提高排气槽附近熔接痕的强度。

排气槽的截面形状一般为矩形或梯形。对于中小型塑件，分型面上排气槽的尺寸为深度取\(\frac{1}{4} \)英寸，宽度取\(\frac{1}{8} \)英寸，视塑件体积和排气槽数量而定，其截面积可按下式计算

\[
F = \frac{0.05V}{n}
\]

式中

- \(V \) ——塑件体积，\(\text{mm}^3 \)
- \(n \) ——该型腔排气槽数目
- \(F \) ——排气槽截面积，\(\text{mm}^2 \)

其推荐尺寸如表所示。

<table>
<thead>
<tr>
<th>排气槽截面积推荐尺寸</th>
<th>(F/\text{mm}^2)</th>
<th>(\times \text{槽宽} \times \text{槽深} / \text{mm} \times \text{mm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 0.2)</td>
<td>5 \times 0.04</td>
<td></td>
</tr>
<tr>
<td>(> 0.2 \sim 0.4)</td>
<td>5 \times 0.08</td>
<td></td>
</tr>
<tr>
<td>(> 0.4 \sim 0.6)</td>
<td>6 \times 0.10</td>
<td></td>
</tr>
<tr>
<td>(> 0.6 \sim 0.8)</td>
<td>8 \times 0.10</td>
<td></td>
</tr>
<tr>
<td>(> 0.8 \sim 1.0)</td>
<td>10 \times 1.0</td>
<td></td>
</tr>
<tr>
<td>(> 1.0 \sim 1.5)</td>
<td>10 \times 0.15</td>
<td></td>
</tr>
<tr>
<td>(> 1.5 \sim 2.0)</td>
<td>10 \times 0.20</td>
<td></td>
</tr>
</tbody>
</table>

排气槽位置可按以下原则确定：
排气槽应开在远离浇口的末端即气体最终聚集处。靠近嵌件或壁厚最薄处。因为这里最容易形成熔接痕，熔接痕处应排尽气体和排除部分冷料。最好开设在分型面上。因为分型面上排气槽产生的溢边很容易随制件脱出。模具上的活动型芯或顶杆，其配合间隙都可用来排气。应在每次成形后清除溢入间隙的塑料，以保持排气畅通。
挤出机头概述

挤出成形是热塑性塑料的成形方法之一，它可以成形各种塑料管材、棒材、板材、薄膜以及电线、电缆等连续型材，还可以对塑料进行塑化、混合、造粒、脱水及喂料等准备工序或半成品加工。

挤出模包括两部分：机头和定型模。

机头的作用
机头是挤出塑料制件成形的主要部件，它使来自挤出机的熔融塑料由螺旋运动变为直线运动，并进一步塑化，产生必要的成形压力，保证塑件密实，从而获得截面形状相似的连续型材。

定型模的作用
从机头中挤出的塑料制件虽然具备了既定的形状，可是因为制件温度比较高，由于自重而会发生变形，因此需要使用定径装置将制件的形状进行冷却定型，从而获得能满足要求的正确尺寸、几何形状及表面质量。通常采用冷却、加压或抽真空的方法，将从口模中挤出的塑料的既定形状稳定下来，并对其进行精整，从而得到截面尺寸更为精确、表面更为光亮的塑料制件。

机头的分类
（1）按挤出成形的塑件分类
通常挤出成形塑件有管材、棒材、板材、片材、网材、单丝、粒料、各种异型材、吹塑薄膜、电线电缆等，所用机头分别称为管机头、棒机头。

（2）按制品出口方向分类
可分为直向机头和横向机头。前者机头内料流方向与挤出机螺杆轴向一致，如硬管机头；后者机头内料流方向与挤出机螺杆轴向成某一角度，如电缆机头。

（3）按机头内压力大小分类
可分为低压机头（料流压力小于4 MPa）、中压机头（料流压力为4~10 MPa）和高压机头（料流压力大于10 MPa）。
8.1.2 结构组成

1. 口模和芯棒
 口模用来成形塑件的外表面，芯棒用来成形塑件的内表面，所以口模和芯棒决定了塑件的截面形状。

2. 过滤网和过滤板
 过滤网的作用是将塑料熔体由螺旋运动转变为直线运动，过滤杂质，并形成一定的压力；过滤板又称多孔板，同时还起支承过滤网的作用。

3. 分流器和分流器支架
 分流器又称鱼雷头，使通过它的塑料熔体分流变成薄环状以平稳地进入成形区，同时进一步加热和塑化；分流器支架主要用来支承分流器及芯棒，同时也能对分流后的塑料熔体加强剪切混合作用，但产生的熔接痕影响塑件强度。小型机头的分流器与其支架可设计成一个整体。

4. 机头体
 机头体相当于模架，用来组装并支承机头的各零件。机头体需与挤出机筒连接，连接处应密封以防塑料熔体泄漏。

5. 温度调节系统
 为了保证塑料熔体在机头中正常流动及挤出成形质量，机头上一般设有可以加热的温度调节系统，如图所示的电加热圈。

6. 调节螺钉
 图所示调节螺钉用来调节控制成形区内口模与芯棒间的环隙及同轴度，以保证挤出塑件壁厚均匀。通常调节螺钉的数量为

7. 定型模（定径套）
 离开成形区后的塑料熔体虽已具有给定的截面形状，但因其温度仍较高不能抵抗自重变形，为此需要用定型模对其进行冷却定型，以使塑件获得良好的表面质量、准确的尺寸和几何形状。

8.1.3 设计原则

1. 内腔呈流线型
 为了使塑料熔体能沿着机头中的流道均匀平稳流动而顺利挤出，机头的内腔应呈光滑的流线型，表面粗糙度值应小于1.6～3.2 \(\mu m \)。流道中不能有死角和停滞区，以免过热分解。

2. 足够的压缩比
 为使制品密实和消除因分流器支架造成的结合缝，根据制品和塑料种类不同，应设计足够的压缩比。

3. 正确的截面形状及尺寸
 由于塑料的物理性能和压力、温度等因素引起的离模膨胀效应，及由于牵引作用引起的收缩。
挤出模结构

管材；定形模；口模；芯棒；调节螺钉；分流器；分流器支架；机头体；过滤网；电加热圈（加热器）

缩效应使得机头的成形区截面形状和尺寸并非塑件所要求的截面形状和尺寸,因此设计时,要对口模进行适当的形状和尺寸补偿,合理确定流道尺寸,控制口模成形长度,获得正确的截面形状及尺寸。

结构紧凑

在满足强度和刚度条件下,机头结构应紧凑,并且装卸方便,不漏料,形状设计的规则、对称,便于均匀加热。

合理选择材料

机头内的流道与流动的塑料熔体相接触,磨损较大;有的塑料在高温成形过程中还会产生化学气体,腐蚀流道。因此为提高机头的使用寿命,机头材料应选择耐磨、耐腐蚀、硬度高的钢材或合金钢。

机头与挤出机的关系

机头与挤出机的连接

挤出成形的设备是挤出机,每副挤出成形模具都只能安装在与其相适应的挤出机上。设计机头的结构时,首先要了解挤出机的技术参数以及机头与挤出机的连接形式,所设计的机头应当适应挤出机的要求。由于挤出机的型号不同,其连接形式亦不同。国产挤出机的技术参数和连接形式及尺寸,分别见图1、图2及图3。

图1中机头以螺纹连接在机头的法兰上,而机头法兰是以铰链螺钉与机筒法兰连接固定的,图2中为8个铰链螺钉,有时为10个铰链螺钉。一般的安装次序是先松动铰链螺钉,打开机头法兰,清理干净后,将过滤板装入机筒部分(或装在机头上),再将机头安装在机头法兰上,最后闭合机头法兰,紧固铰链螺钉即可。

8.1.4

1.

4.

5.

8.1.4
机头连接形式之一

图中的机头与挤出机的同心度是靠机头的内径和栅板的外径配合，因为栅板的外径与机筒有配合，因此保证了机头与机筒的同心度要求。安装时栅板的端部必须压紧，否则会漏料。图与图的连接形式基本相同。

机头连接形式之二

图所示为机头与挤出机相连接的又一种形式。机头用内六角螺钉与机头法兰连接固定。因为机头法兰与机筒法兰有定位销定位，机头的外圆与机头法兰内孔配合，因此可以保证机头与挤出机的同心度。

图所示为快速更换机头的一种连接形式。其动作过程是：由液压动力推动锁紧环旋转，使螺纹部分松开，当旋转到开槽部位与右卡紧环的凸起部对正时，右卡紧环可绕铰链座上的铰链轴转动，退出锁紧环，这时可将机头移到右侧去清洗，然后换上已清洗好的左卡紧环（使左卡紧环的凸起对正锁紧环的开槽后，卡紧环即可装入锁紧环中），液压动力转动锁紧环，使左卡紧环锁紧，即可连续供料。
机头连接形式之三
—机头法兰；
—铰链螺钉；
—挤出机法兰；
—(过滤板)栅板；
—螺杆；
—机筒；
—螺钉；
—定位销

图快速更换机头
—铰链座；
—锁紧环；
—固定套；
—过滤板；
—口模；
—测温器；
—手柄

国产挤出机的主要参数
目前应用最广泛的是卧式单螺杆非排气式挤出机。表列出了我国生产的适用于加工管、板、膜、型材及型坯等多种塑料制件以及塑料包覆电线电缆的单螺杆挤出机的主要参数。

<table>
<thead>
<tr>
<th>序号</th>
<th>螺杆直径 /mm</th>
<th>L/D</th>
<th>产量 kg/h</th>
<th>电动机功率 kW</th>
<th>加热功率 kW</th>
<th>中心高 /mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>20</td>
<td>2 – 6</td>
<td>3/1</td>
<td>3</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>25</td>
<td>2 – 6</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
管材挤出机头

管材挤出机头在挤出机头中具有代表性，用途较广，主要用来成形连续的管状塑件。管机头适用的挤出机螺杆长径比（螺杆长度与其直径之比）L/D，螺杆转速n。

8.2 常用的管材挤出机头结构

常用的管材挤出机头结构有直通式、直角式和旁侧式三种形式。另外，还有微孔流道挤管机头等。

8.2.1 直通式挤管机头

直通式挤管机头如图所示，主要用于挤出薄壁管材，其结构简单，容易制造。它适用于挤出小管，分流器和分流器支架设计成一体，装卸方便。塑料熔体经过分流器支架时，产生几条熔接痕，不易消除。

直通式挤管机头适用于挤出成形软硬聚氯乙烯、聚乙烯、尼龙、聚碳酸酯等塑料管材。

<table>
<thead>
<tr>
<th>序号</th>
<th>螺杆直径 /mm</th>
<th>L/D</th>
<th>HPVC kg/h</th>
<th>SPVC kg/h</th>
<th>电动机功率 /kW</th>
<th>加热功率 /kW</th>
<th>中心高 /mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15</td>
<td>15</td>
<td>7 ~ 18</td>
<td>7 ~ 18</td>
<td>5/1.67</td>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>15</td>
<td>15 ~ 33</td>
<td>16 ~ 50</td>
<td>15/5</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>15</td>
<td>35 ~ 70</td>
<td>40 ~ 100</td>
<td>22/7.3</td>
<td>18</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>15</td>
<td>56 ~ 112</td>
<td>70 ~ 160</td>
<td>55/18.3</td>
<td>30</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>15</td>
<td>95 ~ 190</td>
<td>120 ~ 280</td>
<td>75/25</td>
<td>45</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>15</td>
<td>160 ~ 320</td>
<td>200 ~ 480</td>
<td>100/33.3</td>
<td>75</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
并产生一条熔接痕。熔体的流动阻力小，成形质量较高。但机头结构复杂，制造困难。

图8.6 直角式挤管机头

1—口模；2—调节螺钉；3—芯棒；4—机头体；5—连接管

图8.7 旁侧式挤管机头

1—温度计插孔；2—口模；3—芯棒；4—电热器；5—调节螺钉；6—机头体

3. 微孔流道挤管机头

图8.8 微孔流道挤管机头

1—芯棒加热器；2—机头体；3—芯棒；4—熔料测温孔；5—机头体

4. 管材挤出机头

图8.9 管材挤出机头

1—机头体；2—芯棒；3—熔料测温孔；4—机头体；5—调节螺钉；6—芯棒；7—口模；8—机头体；9—调节螺钉；10—机头体；11—芯棒；12—机头体
所以口模与芯棒的间隙下面比上面要小，用以克服因管材自重而引起的壁厚不均匀。

图8.8

8.2.2 工艺参数的确定

主要确定机头内口模、芯棒、分流器和分流器支架的形状和尺寸及其工艺参数。在设计管材挤出机头时，需有已知的数据，包括挤出机型号、制品的内径、外径及制品所用的材料等。

口模

口模是用于成形管子外表面的成形零件。在设计管材模时，口模的主要尺寸为口模的内径和定型段的长度，如图8.1所示。

（1）口模的内径

口模内径的尺寸不等于管材外径的尺寸，因为挤出的管材在脱离口模后，由于压力突然降低，体积膨胀，使管径增大，此种现象为巴鲁斯效应。也可能由于牵引和冷却收缩而使管径变小。可根据经验确定，通过调节螺钉（图8.1中（1）调节口模与芯棒间的环隙使其达到合理值。

膨胀或收缩都与塑料的性质、口模的温度压力以及定径套的结构有关

式中

\[D = \frac{d}{K} \]

其中

- \(D \)——口模的内径，单位：mm
- \(d \)——管材的外径，单位：mm
- \(K \)——补偿系数，见表8-1。

<table>
<thead>
<tr>
<th>补偿系数 塑料品种</th>
<th>内径定径</th>
<th>外径定径</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>—</td>
<td>0.95~1.05</td>
</tr>
<tr>
<td>PA</td>
<td>1.05~1.10</td>
<td>—</td>
</tr>
<tr>
<td>PE, PP</td>
<td>1.20~1.30</td>
<td>0.90~1.05</td>
</tr>
</tbody>
</table>

定型段长度

口模和芯棒的平直部分的长度称为定型段，见图8.1中（2）。塑料通过定型部分，料流阻力减小，有利于管材的成形。
力增加，使制品密实，同时也使料流稳定均匀，消除螺旋运动和接合线。

随着塑料品种及尺寸的不同，定型长度也应不同，定型长度不宜过长或过短。过长时，料流阻力增加很大；过短时，起不到定型作用。当不能测得材料的流变参数时，可按经验公式计算。

式中——管材外径的公称尺寸，

通常当管子直径较大时定型长度取小值，因为此时管子的被定型面积较大，阻力较大，反之就取大值。同时考虑到塑料的性质，一般挤软管取大值，挤硬管取小值。芯棒（芯模）

芯棒是用于成形管子内表面的成形零件。一般芯棒与分流器之间用螺纹连接，其结构如图中所示。芯棒的结构应利于物料流动，利于消除接合线，容易制造。其主要尺寸为芯棒外径、压缩段长度和压缩角。

芯棒的外径

芯棒的外径由管材的内径决定，但由于与口模结构设计同样的原因，即离模膨胀和冷却收缩效应，所以芯棒外径的尺寸不等于管材内径尺寸。根据生产经验，可按下式计算

式中——芯棒的外径，

口模的内径，

口模与芯棒的单边间隙，

管材壁厚，

芯棒定型段的长度与相等或稍长。

可按下面经验公式计算

管材挤出机头
式中

——芯棒的压缩段长度,

——塑料熔体在过滤板出口处的流道直径。

芯模收缩角

低黏度塑料

高黏度塑料

分流器和分流器支架

图所示为分流器和分流器支架的结构图。塑料通过分流器，使料层变薄，这样便于均匀加热，以利于塑料进一步塑化。大型挤出机的分流器中还设有加热装置。

分流锥的角度（扩张角）

低黏度塑料

高黏度塑料

扩张角

收缩角。

过大时料流的流动阻力大，熔体易过热分解；过小时不利于机头对其内的塑料熔体均匀加热，机头体积也会增大。

分流锥长度

式中

——机头于过滤板相连处的流道直径。

分流锥尖角处圆弧半径

不宜过大，否则熔体容易在此处发生滞留。

分流器表面粗糙度值

栅板与分流锥顶间隔

或

式中

——螺杆的直径，如图所示。

8. 9

8. 6

8. 8
过小料流不均，过大则停料时间长。

分流器支架主要用于支承分流器及芯棒。支架上的分流肋应做成流线型，在满足强度要求的条件下，其宽度和长度尽可能小些，以减少阻力。出料端角度应小于进料端角度，分流肋尽可能少些，以免产生过多的熔接痕迹。

一般小型机头根，中型的%根，大型的#根。

拉伸比和压缩比

拉伸比和压缩比是与口模和芯棒尺寸相关的工艺参数。根据管材断面尺寸确定口模环隙截面尺寸时，一般尚凭拉伸比确定。

所谓管材的拉伸比是口模和芯棒的环隙截面积与管材成形后的截面积之比，其计算公式如下

$\varepsilon = 4 \sim 10$

$\varepsilon = 2.5 \sim 6.0$

8.2.3
一般用外径定径和内径定径两种方法。

外径定径
如果管材外径尺寸精度高，使用外径定径。外径定径是使管子和定径套内壁相接触，为此，常用内部加压或在管子外壁抽真空的方法来实现，因而外径定径又分为内压法和真空法。

(a) 内压法外定径
如图所示。在管子内部通入压缩空气（预热，约），为保持压力，可用浮塞堵住防止漏气，浮塞用绳索系于芯模上。定径套的内径和长度一般根据经验和管材直径来确定，如表所示。

<table>
<thead>
<tr>
<th>定径套的内径</th>
<th>定径套的长度</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE/PP</td>
<td>1.02~1.04D_s</td>
</tr>
<tr>
<td>PVC</td>
<td>1.00~1.02D_s</td>
</tr>
</tbody>
</table>

注: D_s——管材的公称直径。

(b) 真空法外定径
如图所示，在定径套内壁上打很多小孔，抽真空用，借助真空吸附力将管材外壁紧贴于定径套内壁，与此同时，在定径套外壁、内壁夹层内通入冷却水，管坯伴随真空吸附过程的进行，而被冷却硬化。真空法的定径装置比较简单，管口不必堵塞，但需要一套抽真空装置。

设计定径套的内径
设计定径套的内径时，其尺寸不得小于口模内径。
真空设备。常用于生产小管。

真空定径套生产时与机头口模应有距离，使口模中流出的管材先行离模膨胀和一定程度的空冷收缩后，在进入定径套中，冷却定型。

定径套内的真空度一般要求在。真空孔径在范围内选取，与塑料黏度和管壁厚度有关，如塑料黏度大或管壁厚度大，孔径取大值，反之取小值。

真空定径套的内径如表所示。

<table>
<thead>
<tr>
<th>材料</th>
<th>定径套内径</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPVC</td>
<td>0.993~0.99D₀</td>
</tr>
<tr>
<td>PE</td>
<td>0.98~0.96D₀</td>
</tr>
</tbody>
</table>

D₀——管材的公称直径。

真空定径套的长度一般应大于其他类型定径套的长度。例如，对于直径大于的管材，真空定径套的长度可取6D₀倍的管材外径。这样有助于更好地改善或控制离模膨胀（巴鲁斯效应）和冷却收缩对管材尺寸的影响。

内径定径法

内径定径是固定管材内径尺寸的一种定径方法。此种方法适用于侧向供料或直角挤管机头。该定径装置如图所示，定径芯模与挤管芯模相连，在定径芯模内通入冷却水。当管坯通过定径芯模后，便获得内径尺寸准确、圆柱度较好的塑料管材。这种方法使用较少，因为管材的标准化系列多以外径为准。但内径公差要求严格、用于压力输送的管道，是这种定径方法的唯一应用，同时内径定径管壁的内应力分布较合理。

定径套应沿其长度方向带有一定的锥度：在之间选取。

定径套外径一般取为管材内径)，定径套外径稍大于管材内径，使管材内壁紧贴在定径套上，则管壁获得较低的表面粗糙度值。另外，通过一段时间的磨损也能保证管材内径的尺寸公差，提高定径套的寿命。

定径套的长度一般取。牵引速度较大或管材壁厚较大时取大值，反之，取小值。

吹塑薄膜挤出机头

吹塑薄膜挤出机头简称吹膜机头，其方法是挤出壁薄的大直径的管坯，然后用压缩空气吹涨。吹塑成形可以生产聚氯乙烯、聚乙烯、聚苯乙烯、聚酰胺等各种塑料薄膜，应用广泛。
8.3.1 结构类型及参数确定

芯棒式机头
- 芯棒;
- 缓冲槽;
- 口模;
- 压环;
- 调节螺钉;
- 上机头体;
- 机颈;
- 紧固螺母;
- 芯棒轴;
- 下机头体

中心进料的十字机头
- 口模;
- 分流器;
- 调节螺钉;
- 通压缩空气管;
- 机头体

机头结构类型
常用的薄膜机头大致可分为芯棒式机头、十字形机头、螺旋机头、多层薄膜吹塑机头和旋转机头。

(芯棒式机头)
如图所示，来自挤塑机的塑料熔体，通过机颈到达芯棒轴转向，并分成两股沿芯棒轴分料线流动，在其末端尖处汇合后，沿机头流道芯棒轴和口模的环隙挤成管坯，由芯棒中通入压缩空气，将管坯吹涨成膜，调节螺钉可调节管坯厚薄的均匀性。

芯棒扩张角和分流线斜角
芯棒扩张角在选取上不可取得过大，否则会对机头操作工艺控制、膜厚均匀度和机头强度设计等方面产生不良影响。通常取，必要时，可取，芯棒轴分流线斜角的取值与塑料的流动性有关，不可取得太小，否则会使芯棒尖处出料慢，形成过热滞料分解，一般。

特点

图 8.12
1—2—3—4—5—6—
7—8—9—10—

1.

图 8.13
1—2—3—4—5—
芯棒式机头结构简单,机头内部通道空隙小,存料少,熔体不易过热分解,适用于加工聚氯乙烯等热敏性塑料,仅有一条薄膜熔合线。但芯棒轴受侧向压力,会产生“偏中”现象,造成口模间隙偏移,出料不均,所以薄膜厚度不易控制均匀。

十字形机头如图所示,其结构类似于挤管机头。在设计这种中心进料式机头时,要注意分流器支架上的支承筋在不变形的前提下,数量尽可能少一些,宽度和长度也应小一些,以减少接合线。为了消除接合线,可在支架上方开一道环形缓冲槽,并适当加长支承筋到出口的距离。

螺旋式机头—进料口;—通气孔;—芯棒;—流道;—缓冲槽;—调节螺钉;—口模。十字形机头的优点是出料均匀,薄膜厚度易于控制。由于中心进料,芯模不受侧向力,因而没有“偏中”现象。其缺点是因为有几条支承筋,增加了薄膜的接合线;机头内部空腔大,存料多,不适合于容易分解的物料。

螺旋式机头如图所示,熔融树脂从机头底部的树脂进料口进入模体,通过一个由若干个径向分布孔所组成的星形分配器,自分歧点分成若干股料流,分别沿着各自的螺槽旋转上升,并从切向流动逐渐过渡为轴向流动。至成形前的某处汇合,然后经缓冲槽均匀地从定型段挤出。这种机头适合于加工流动性好而不易分解的树脂。

螺旋槽数目如表所示,主要取决于挤出量和螺旋芯棒的直径。星形分配器各径向孔的直径取决于树脂类型、熔体指数、加工温度,通常为50。螺槽开始点的深度一般为20 ~ 25 mm,口模定型段高度为25。口模间隙为2.5 mm。中心进料孔直径可根据挤出机大小和口模直径按表进行选取。

多层薄膜吹塑机头也称复合吹塑机头,是将同种(异色)或异种树脂分别加入两台以上的挤出机,经过同一个模具同时挤出,一次制成多色或多层薄膜。挤出的各熔融树脂分别导入模内各自的流路,这些层流于模口定型区进行汇合,如图所示。在设计多层薄膜吹塑机头时,一般要求机头内的料流达到相等的线速度。其次,对模内复合机头应注意接合部件形状,使之容易加工制造。另外,模外复合机头往往带有引入氧化性气体通道,使两层薄膜之间进行物理和化学的接合。
中心进料孔直径与螺杆、口模直径的关系

<table>
<thead>
<tr>
<th>螺杆直径</th>
<th>45</th>
<th>65</th>
<th>90</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>口模直径</td>
<td>50</td>
<td>150</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>中心进料孔直径</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>32</td>
</tr>
</tbody>
</table>

多层薄膜吹塑机头

1. 50——10
2. 2——3
3. 4
4. 7
5. 8
6. 9

参数的确定

1. **调节装置**
 - 设调节环和调节螺钉，保证机头出料口环形隙缝宽度均匀一致，调节螺钉≥2个。

2. **环形隙缝尺寸**
 - 应按薄膜厚度选取，太小时机头内反压力大，太大时又影响薄膜厚度的均匀性。一般薄膜厚度为1.5~3mm，应符合吹胀比、牵引比和压缩比。

3. **吹胀比**
 - 吹胀后的泡管膜直径与未吹胀的管坯直径（也叫机头口模直径）的比值，一般取0.5~1。增大吹胀比，薄膜的横向强度随之增大，但不能太大，以致吹破。

 \[a = \frac{2W}{\pi d} \]

 - 其中：
 - \(a \)——环形隙缝尺寸
 - \(W \)——双层膜宽度
 - \(d \)——泡管膜直径
8.3 拉伸薄膜挤出机

牵引比是指薄膜牵引速度与管坯挤出速度的比值，一般为

$$ \frac{V}{\pi d \delta \gamma} $$

式中

- V - 牵引速度，单位为 cm/min
- Q - 管坯挤出速度，单位为 g/min
- d - 口模直径，单位为 cm
- δ - 口模间隙，单位为 cm
- γ - 熔融树脂密度，单位为 g/cm³

压缩比是指机颈内流道截面积与口模定型区环形流道截面积的比值，一般应

$$ \frac{A}{\pi d \delta \gamma} $$

定型区长度

一般定型区长度 $L_1 \geq 15 \delta$，以控制薄膜的厚度，可参考表

<table>
<thead>
<tr>
<th>L_1</th>
<th>PVC</th>
<th>PE</th>
<th>PA</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 ~ 30 δ</td>
<td>25 ~ 40 δ</td>
<td>15 ~ 20 δ</td>
<td>25 ~ 40 δ</td>
<td></td>
</tr>
</tbody>
</table>

8.3.2 缓冲槽尺寸

通常在芯棒的定型区开设1 ~ 2个缓冲槽，其深度取 0.9δ，宽度取 1.2δ，它的作用是可以用来消除管坯上的分流痕迹。

8.16 芯棒尖到模口处的距离 d 应不小于芯棒轴直径的 2×3 倍。

冷却装置

为了使接近流动态的膜管固化定型，在牵引辊的压力作用下不相互黏结，并尽可能缩短机头与牵引辊之间的距离，必须对刚刚吹胀的膜管进行强制冷却，冷却介质为空气或水。

风环是比较常用的冷却装置，其结构如图所示。一般风环的进风口至少有0个，由鼓风机送来的空气沿风环切线方向同时进入。风环上下各设一个冷却装置。
层挡板，对进入的空气起缓冲和稳压作用，以保证风环口的出风量均匀。

风从风环吹出的倾角取40°~50°，一般，风环内径为机头直径的1.5~2.5倍。

板材与片材挤出机头

凡是成形段横截面具有平行缝隙特征的机头，叫板材与片材挤出机头，也称平缝形挤出机头。主要用于塑料板材、片材和平膜加工。

由挤出机提供的塑料熔体，从圆形逐渐过渡到平缝形，并要求在其出口横向全宽方向上，熔体流速均匀一致，这是板材与片材挤出机头设计的关键。其次，要求塑料熔体流经整个机头流道的压降要适度，并停留时间要尽可能短，且无滞料现象发生。

目前，已能挤出成形达0.5mm厚度的板材。但通常认为仅在3mm以内才可视为已经掌握的厚度。板片材宽度可达4.5mm。适用于板片材挤出成形的塑料品种有PE、PP、ABS、PS、PC、PA、POM等，其中前四种应用较多。

用于挤出成形板材与片材的机头可分为鱼尾式机头、支管式机头、螺杆式机头和衣架式机头等四大类，本节只介绍前三种结构形式。

鱼尾式机头

结构及其特点

鱼尾式机头其模腔似鱼尾状。塑料熔体呈放射状流动，从机头中部进入模腔，向两侧分流。此时，熔体中部压力大、流速高、温度高及黏度小，而熔体两端压力小、流速低、温度低及黏度大，因此机头中部出料多，两端出料少，造成制品厚度不均匀。为了克服此缺陷，通常在机头模腔内设置阻流器，如图4-5所示。还可采用阻流棒，如图4-4所示，以调节料流阻力大小。

图4-5 带阻流器的鱼尾式机头

1—模口调节块；2—阻流器

图4-4 带阻流棒的鱼尾式机头

此种机头结构较简单且易加工，适合于多种塑料的挤出成形，如黏度较低的聚烯烃类塑料、黏度较高的塑料以及热敏性较强的聚氯乙烯和聚甲醛等。
参数的确定

不适于挤出成形宽幅板(片)材,一般幅宽小于500 mm,板厚不大于3 mm。鱼尾的扩张角不能太大(通常取80°左右)。

支管式机头

这种机头的型腔呈管状,从挤出机挤出的熔体先进入歧管中,然后通过歧管经模唇间的缝隙流出成板材坯料,能均匀地挤出宽幅制品。该种机头按结构又可分成四种形式:

一端供料的直支管机头

如图8.19所示,塑料熔体从支管的一端进料,而支管的另一端则被封死。支管模腔与挤出料流方向一致,塑件的宽度可由幅宽调节块进行调节,但塑料熔体在支管内停留时间较长,容易分解变色,且温度难于控制。

中间供料的直支管机头

如图8.20所示,塑料熔体从支管的中间进料,然后分流充满支管的两端,再由支管的平缝中挤出。这种机头结构简单,能调节幅宽,可生产宽幅制品。制品沿中心线有较好的对称性。此外,牵引切割装置顺着挤出机轴向排成直行,所以应用较多。

中间供料的弯支管机头

如图8.21所示,具有中间供料的直支管机头的优点,料腔呈流线型,没有死角,不滞留。适合于挤出成形熔融黏度低或黏度高而热稳定性差的塑料。但机头制造困难,不能调节幅宽。板材与片材挤出机头
带有阻流棒的双支管机头

如图所示，用于加工黏度高的宽幅塑件，成形幅宽可达\(1000 \sim 2000\) mm。阻流棒的作用是调节流量，限制模腔中部塑料熔体的流速。

图\(8.22\)带有阻流棒的双支管机头
1—支管模腔；2—阻流棒；3—模口调节块

参数的确定

支管式机头的歧管直径在\(*' (,,' *)\)范围内，对于熔融黏度低的塑料，管径可选大一些；对于熔融黏度高、热稳定性差的塑料，支管直径选小些，以防塑料熔体在机头内停留时间过长，造成分解。

平直部分的长度依熔体特性而不同，一般取长度为板厚的\&' (,",') 倍。但板材厚时，由于刚度关系，模唇长度应不超过\$')\)。

螺杆式机头

螺杆机头实际是支管式机头的一种，只是在直歧管内装上了螺杆。熔体经过螺杆的分配，可使模唇的压力均匀，流速趋于一致，获得厚度均匀的制品。因此适用于宽度较大的片材。按机头的结构形式可分为两种：

一端供料型螺杆机头

如图\(8.23\)所示，在直歧管内装上了一根螺杆，由一端进料，螺杆旋转可进一步塑化塑料熔体，并均匀地进行分配。分配螺杆的直径应比连用的挤出机螺杆直径稍小，根径为渐变的。为了减少塑料熔体分解的机会，分配螺杆做成多头螺纹。

中间供料型螺杆机头

如图\(8.24\)所示，在直歧管内装上了一对方向相反的螺杆，由歧管中间进料，使得熔体流程变短。机头温度容易控制，适用于加工热稳定性差的塑料，可生产宽幅制品，最宽可达\"'''\)。

其缺点是，由于分配螺杆的转动，挤出制品易出现波浪形料流痕。机头结构复杂，成本较高。
挤出成形模具包括几部分？

管材挤出机头的工艺参数包括哪些？

什么是拉伸比？什么是压缩比？

挤出成形棒材机头与管材机头有何不同？

挤压式包覆机头与套管式包覆机头的区别？

板材与片材挤出机头为什么要设阻流器或阻流棒？

口模与制品形状一样吗？

为什么管材要定径和冷却？

挤出时拉伸比较大有何优点？

习题

1.
2.
3.
4.
5.
6.
7.
8.
9.
塑料的中空成形是指用压缩空气吹成中空容器和用真空吸成壳体容器而言。吹塑中空容器主要用于制造薄壁塑料瓶、桶以及玩具类塑件。吸塑中空容器主要用于制造薄壁塑料包装用品、杯、碗等一次性使用的容器。

分类及特点

中空吹塑成形是把塑性状态的塑料形坯置于模具内, 压缩空气注入型坯中将其吹涨, 使吹涨后制品的形状与模具内腔的形状相同, 冷却定形后得到需要的产品。根据成形方法的不同, 可分为四种形式。

挤出吹塑成形

挤出吹塑成形是成形中空塑件的主要方法, 图所示为挤出吹塑成形工艺过程。首先挤出机挤出管状型坯; 截取一段管坯趁热将其放入模具中, 闭合对开式模具的同时夹紧型坯上下两端; 向型腔内通入压缩空气, 使其膨胀附着模腔壁而成形, 然后保压; 最后经冷却定型, 便可排除压缩空气并开模取出塑件。

挤出吹塑成形模具结构简单, 投资少, 操作容易, 适合多种塑料的中空吹塑成形。缺点是壁厚不易均匀, 塑件需后加工去除飞边。

注射吹塑成形

图所示是用注射机在注射模中制成型坯, 然后把热型坯移入中空吹塑模具中进行中空吹塑。首先注射机在注射模中注入熔融塑料制成型坯; 型芯与型坯一起移入吹塑模内, 型芯为空心并且壁上带有孔; 从芯棒的管道内通入压缩空气, 使型坯吹涨并贴于模具的型腔壁上; 保压、冷却定型后放出压缩空气, 并且开模取出塑件。

经过注射吹塑成形的塑件壁厚均匀, 无飞边, 不需后加工, 由于注射型坯有底, 因此底部没有拼和缝, 强度高, 生产效率高, 但是设备与模具的价格昂贵, 多用于小型塑件的大批量生产。

注射拉伸吹塑成形

如图所示, 与注射吹塑成形比较, 增加了延伸这一工序。首先注射一空心的有底的型坯; 型坯移到拉伸和吹塑工位, 进行拉伸; 吹塑成形、保压; 冷却后开模取出塑件。
9.1 挤出吹塑成形
1—挤出机头; 2—吹塑模; 3—管状型坯; 4—压缩空气吹管; 5—塑件

9.2 注射吹塑成形
1—注塑机喷嘴; 2—注塑型坯; 3—空心凸模; 4—加热器; 5—吹塑模; 6—塑件

中空吹塑成形模具
还有另外一种注射拉伸吹塑成形的方法,即冷坯成形法。型坯的注射和塑件的拉伸吹塑成形分别在不同设备上进行,型坯注射完以后,再移到吹塑机上吹塑。此时型坯已散发一些热量,需要进行二次加热,以确保型坯的拉伸吹塑成形温度。这种方法的主要特点是设备结构相对较简单。

注射拉伸吹塑成形的原理和双向拉伸薄膜的原理相同,可使分子双轴取向,塑件的透明性得到改善,强度明显增高。

表是拉伸吹塑瓶和普通吹塑瓶性能的比较。

<table>
<thead>
<tr>
<th>力学性能</th>
<th>拉伸吹塑瓶</th>
<th>普通吹塑瓶</th>
<th>聚氯乙烯瓶</th>
</tr>
</thead>
<tbody>
<tr>
<td>纵向抗拉强度(屈服)</td>
<td>80</td>
<td>93</td>
<td>45</td>
</tr>
<tr>
<td>纵向抗拉强度(断裂)</td>
<td>155</td>
<td>166</td>
<td>60</td>
</tr>
<tr>
<td>纵向拉伸破坏变形</td>
<td>8</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>落锤冲击强度</td>
<td>3 *</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>试样壁厚</td>
<td>0.30</td>
<td>0.60</td>
<td>0.55</td>
</tr>
</tbody>
</table>

注:拉伸吹塑瓶以普通吹塑瓶一半的壁厚,可以与普通吹塑瓶表示出大致相同的落锤冲击强度。

多层吹塑成形

多层吹塑是指不同种类的塑料,经特定的挤出机头挤出一个坯壁分层而又黏结在一起的型坯,再经吹塑制得多层中空塑件的成形方法。发展多层吹塑的主要目的是解决单独使用一种塑料不能满足使用要求的问题。例如单独使用聚乙烯,但它的气密性较差,所以其容器不能盛装带有香味的食品,而聚氯乙烯的气密性优于聚乙烯,可采用外层为聚氯乙烯、内层为聚乙烯的容器,气密性好且无毒。
多层容器质量的影响因素是层间的黏合问题与接缝处的强度问题，这与塑料的种类、层数和层厚的比率有关，要得到合格的多层吹塑容器，关键是挤出厚薄均匀的多层型坯。

由于多种塑料的复合，塑料的回收利用比较困难；机头结构复杂，设备投资大，成本高。

片材吹塑成形如图所示。将压延或挤出成形的片材再加热，使之软化，放入型腔，合模后在片材之间通入压缩空气而成形出中空塑件。图(a)为合模前的状态，图(b)为合模后

吹塑塑件设计中空成形时，需要确定的是塑件的吹胀比、延伸比、螺纹、塑件上的圆角、支撑面及外表

面等，现在分别叙述。

吹胀比是指塑件最大直径与型坯直径之比，一般在

之间选择。吹胀比过大，会使塑件壁厚不均匀，加工工艺不易掌握。计算公式如下

式中——吹胀比；
——塑件外径，
——型坯外径，

机头口模与芯棒之间的间隙可根据吹胀比和塑件的最大径向尺寸来确定。计算公式如下

式中——口模与芯棒之间的间隙，
——吹胀比，一般取；
——塑件的壁厚，
——修正系数，一般取，黏度大的塑料取小值。

实践表明，吹胀比越大，塑料瓶的横向强度越高，但只能在一定的范围内。

型坯断面形状一般要做成与塑件的外形轮廓大体一致，如吹塑圆形截面的瓶子型腔截面应是圆管形；若吹塑方桶或矩形桶，则型坯断面应制成方管状或矩形管状；其目的是使型坯各部

中空吹塑成形模具
2. \(S_R \)

\[
S_R = \frac{c}{b}
\]

3. \(S_R \)

\[
b \quad \text{mm} \]
\[
c \quad \text{mm} \]

\[
S_R = \frac{4}{B} - 6
\]

4. \(S_R \)

<table>
<thead>
<tr>
<th>(\text{塑件容量})</th>
<th>(\text{塑件壁厚})</th>
<th>(\text{塑件质量})</th>
<th>(\text{延伸比})</th>
<th>(\text{吹胀比})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{塑件容量})</td>
<td>(\text{塑件壁厚})</td>
<td>(\text{塑件质量})</td>
<td>(\text{延伸比})</td>
<td>(\text{吹胀比})</td>
</tr>
<tr>
<td>900</td>
<td>8.4</td>
<td>42</td>
<td>8.6</td>
<td>42</td>
</tr>
<tr>
<td>600</td>
<td>8.6</td>
<td>42</td>
<td>2.76</td>
<td>2.75</td>
</tr>
<tr>
<td>91.1</td>
<td>136.4</td>
<td>84.3</td>
<td>130.7</td>
<td></td>
</tr>
<tr>
<td>127.6</td>
<td>201.3</td>
<td>50.4</td>
<td>159.1</td>
<td></td>
</tr>
<tr>
<td>2834.5</td>
<td>4449.9</td>
<td>2319.6</td>
<td>3487.5</td>
<td></td>
</tr>
</tbody>
</table>

5. \(\text{塑件的支承面} \)

在设计塑料容器时，不可以整个平面作为塑件支承面，应尽量减小底部的支承面，特别要减少结合缝作为支承面，因为结合缝作为支承面，会增加加工难度。
6. 塑件的外表面

吹塑塑件大部分都要求外表面的艺术质量。如雕刻图案、文字和容积刻度等。有的要做成镜面、绒面和皮革面等。这就要求对模具的表面进行艺术加工。其加工方式如下:

- 用喷砂做成绒面;
- 用镀铬抛光做成镜面;
- 用电铸方法铸成模腔壳体然后嵌入模体;
- 用钢材热处理后的碳化物组织形状,通过酸腐蚀做成类似皮革纹;
- 用涂覆感光材料后经过感光显影腐蚀等过程做成花纹。

成形聚氯乙烯塑件的模具型腔表面,最好采用喷砂处理过的粗糙表面,因为粗糙的表面在吹塑成形过程中可以存储一部分空气,可避免塑件在脱模时产生吸真空现象,有利于塑件脱模,并且粗糙的型腔表面并不妨碍塑件的外观,表面粗糙程度类似于磨砂玻璃。

塑件收缩率

通常容器类的塑料制品对精度要求不高,成形收缩率对塑件尺寸影响不大。但对有刻度的定容量的瓶子和螺纹制品,收缩率有相当的影响。各种常用塑料的吹塑成形收缩率见表9-3。

<table>
<thead>
<tr>
<th>塑料名称</th>
<th>收缩率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚缩醛及其共聚物</td>
<td>8.0~3.0</td>
</tr>
<tr>
<td>尼龙</td>
<td>8.2~2.0</td>
</tr>
<tr>
<td>聚乙烯(低密度)</td>
<td>8.0~2.0</td>
</tr>
<tr>
<td>聚乙烯(高密度)</td>
<td>8.0~2.0</td>
</tr>
<tr>
<td>聚丙烯</td>
<td>8.0~2.0</td>
</tr>
<tr>
<td>聚碳酸酯</td>
<td>8.0~2.0</td>
</tr>
<tr>
<td>聚苯乙烯</td>
<td>8.0~2.0</td>
</tr>
<tr>
<td>聚氯乙烯</td>
<td>0.6~0.8</td>
</tr>
</tbody>
</table>

吹塑模具设计

按模具的结构及工艺方法分类,吹塑模分为上吹口和下吹口两类。

- 上吹口式:如图所示是典型的上吹口模具结构,压缩空气由模具上端吹入模腔。
- 下吹口式:图所示是典型的下吹口模具结构,使用时料坯套在底部芯轴上,压缩空气自芯轴吹入。

注射吹塑模具因吹塑时型坯完全置入吹塑模腔内,不需制出夹坯口(切口),只需制出型坯的固定装置,模具设计要点如下:

- 模口:模口在瓶颈板上,是吹管的入口,也是塑件的瓶口,吹塑后对瓶口尺寸进行校正和切除余料。口部内径校正是由装在吹管外面的校正芯棒,通过模口的截断部分,同时进行校正和截断的。
- 夹坯口:也称切口。挤出吹塑过程中,模具在闭合的同时需将型坯封口并将余料切除,因此在模具相应部位要设置夹坯口。瓶底剪切口的截面形状及尺寸如图所示,刃口部接合宽度为1~2 mm,切口倾斜角为9,切口宽度和切口倾斜角见表9-4。
图 9.7 上吹口模具结构
1—口部镶块；2—底部镶块；3—余料槽；4—导柱；5—冷却水道

图 9.8 下吹口模具结构
1—底座；2—口部镶块；3—螺钉；4—冷却水道；5—瓶颈(吹口)镶块

表 9.4 瓶底切口尺寸
聚丙烯	0.5	30
聚乙烯(低密度)	0.5 ~ 4	30 ~ 60
聚乙烯(高密度)	0.1 ~ 4	15 ~ 45
聚氯乙烯	0.2 ~ 4	15 ~ 45
聚缩醛及其共聚物	0.3 ~ 0.4	15 ~ 45
尼龙	0.3 ~ 1	30
聚苯乙烯及其改性品	0.5	60

用于薄壁情况下的切口形状，切口倾斜角小，有利于瓶底的融合，也为减少瓶底残留飞边而采用，此时的尺寸较小。为防止瓶底部分过分变薄而采用在其外侧做一阻挡墙，利用其反压力使余料在未被剪断前先向内拥进一些，以补偿由吹塑所引起的减薄过多。

剪口部分的制造是关键部位，剪口接合面的表面粗糙度值要尽可能地减小，热处理后，要经过磨削和研磨加工，在大量生产中应镀硬铬抛光。

余料槽型坯在刃口的切断作用下，会有多余的塑料被切除，它们将容纳在余料槽内。余料槽通常设在切口的两侧，如图 9.7 和图 9.8 所示。其大小应依型坯夹持后余料的宽度和厚度来确定，以模具能严密闭合为准。

排气孔(槽)模具闭合后，型腔呈封闭状态，应考虑在型坯吹胀时，模具内原有空气的排出问题。排气不良会使塑件表面出现斑纹、麻坑和成形不完全等缺陷。为此，吹塑模还要考虑设置一定数量的排气孔(槽)。一般开设在模具的分型面上和模具的“死角部位”(如在多面角部位或圆瓶的肩部)。在瓶肩和瓶底的周围容易滞留空气，所以在此处设排气孔。贴近型腔处孔径小一些约

第 9 章 气动成形模具
图9.9 模具、型腔及夹坯口（刃口）

根据所用塑料品种的不同而定，如聚乙烯、聚丙烯孔径要小，聚氯乙烯孔径可大；并且根据型腔的容积而定，如桶较大，则孔径可大一些。为了增大分型面的锁模压强，一般都沿型腔周围留有接触面，在接触面上开排气槽，槽深小于一般用平面磨床精磨而成，槽宽依模具大小而定。每一副模具在分型面上的槽数也依型腔的容积而定，在型腔的两边各开三条以上的排气槽。

冷却
吹塑模具的温度一般控制在。吹塑模的冷却效果直接影响到瓶子的表面质量，如果冷却不均匀，吹出的成品表面的光泽便有明显的差异，十分影响外观。

锁模力
吹塑模具合模时，应使两个半模闭合严密，使模具闭合的力为锁模力，锁模力应大于胀模力。计算公式如下

$$
p \geqslant 1.2 \sim 1.3 p_i A
$$

其中

- p——设备的锁模力，MPa
- p_i——吹胀力，MPa
- A——塑件在分型面上的投影面积，mm²

吹胀的压缩空气压力根据所用的塑料而定，见表9.5。

<table>
<thead>
<tr>
<th>塑料种类</th>
<th>吹胀压力（MPa）</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚乙烯（低密度）</td>
<td>18 ~ 20</td>
</tr>
<tr>
<td>聚乙烯（高密度）</td>
<td>22 ~ 25</td>
</tr>
<tr>
<td>聚苯乙烯</td>
<td>25 ~ 28</td>
</tr>
<tr>
<td>聚丙烯</td>
<td>28 ~ 30</td>
</tr>
<tr>
<td>聚碳酸酯</td>
<td>30 ~ 32</td>
</tr>
</tbody>
</table>

真空成形模具
真空成形是把热塑性塑料板、片材固定在模具上，用辐射加热器加热至软化温度，然后用真空泵把板材和模具之间的空气抽掉，使型坯按模具的轮廓成形。随着真空度的提高，型坯下

真空成形模具
方的成形压力只有，而型坯上方的空气压力仍保持在左右。冷却后借助压缩空气使塑件从模具中脱出。

真空成形所加工的材料为薄片状的聚氯乙烯、聚苯乙烯、聚乙烯等。

成形方法及其特点

真空成形方法主要有凹模真空成形、凸模真空成形、凹凸模先后抽真空成形、吹泡真空成形、辅助凸模真空成形和带有气体缓冲装置的真空成形等方法。

凹模真空成形

如图所示，首先将塑料板材置于模具上方将其四周固定，并进行加热软化，如图所示；然后在模具下方抽真空，抽出板材与模具之间空隙中的空气，使软化的板材紧密地贴合在模具上，如图所示；当塑件冷却后，再从模具下方充入空气，取出塑件，如图所示。

用凹模成形法成形的塑件外表面尺寸精度较高，一般用于成形深度不大的塑件。如果塑件深度很大时，特别是小型塑件，其底部转角处会明显变薄。多型腔的凹模真空成形比相同个数的凸模真空成形节省原料，因为凹模模腔间距可以较近，用同样面积的塑料板，可以加工出更多的塑件。

凸模真空成形

有些要求底部厚度不减薄的吸塑件，可以用凸模真空成形，如图所示。被夹紧的塑料板在加热器下加热软化，如图所示；当加热后的片材首先接触凸模时，即被冷却而失去减薄能力。当材料继续向下移动，一直到完全与凸模接触，如图所示；抽真空开始，边缘及四周都由减薄而成形，如图所示。

凸模真空成形多用于有凸起形状的薄壁塑件，成形塑件的内表面尺寸精度较高。

·第一章

气动成形模具

0.06～0.085 MPa

0.1 MPa

9.2.1

1.

9.10

9.10a

9.10b

9.10c

(a)

(b)

(c)

9.10

9.11

9.11a

9.11b

9.11c

(a)

(b)

(c)

9.11
凹凸模先后抽真空成形如图所示。首先把塑料板紧固在凹模上加热，如图所示；软化后将加热器移开，然后通过凸模吹入压缩空气，而凹模抽真空使塑料板鼓起，如图所示；最后凸模向下插入鼓起的塑料板中并且从中抽真空，同时凹模通入压缩空气，使塑料板贴附在凸模的外表面而成形，如图所示。

这种成形方法，由于将软化了的塑料板吹鼓，使板材延伸后再成形，故壁厚比较均匀，可用于成形深型腔塑件。

有些要求壁厚大致均匀的吸塑件，也可以用吹泡真空成形，模具结构如图所示，用置于密闭箱中的凸模成形。首先将片材加热，如图所示；然后向密闭箱内送压缩空气，把片材向外吹涨，再将凸模升起，与片材之间形成密闭状态，如图所示；最后由凸模上的气孔抽真空，利用外面的大气压力使它成形，如图所示。
这种成形方法是预先把片材各部同时减薄，使最后成形时塑件的厚度大体一致。

辅助凸模真空成形（柱塞推下真空成形）

辅助凸模真空成形分为下向真空成形和上向真空成形。

下向真空成形如图所示，首先将固定于凹模的塑料板加热至软化状态，接着移开加热器，用辅助凸模将塑料板推下，这凹模里的空气被压缩，软化的塑料板由于辅助凸模的推力和型腔内封闭的空气移动而延伸；然后凹模抽真空成形。

带有气体缓冲装置的真空成形

带有气体缓冲装置的真空成形如图所示，这是柱塞和压缩空气并用的形式。把塑料板加热后和框架一起轻轻地压向凹模，然后向凹模腔吹入压缩空气，把加热的塑料板吹鼓，多余的气体从板材和凹模的缝隙中逸出，同时从板材上面通过辅助凸模的孔吹出已加热的空气，这时板材就处于两个空气缓冲层之间；辅助凸模逐渐下降；最后辅助凸模内停吹压缩空气，凹模抽真空，使塑料板贴附在凹模型腔上成形，同时辅助凸模升起。这种方法成形出的塑件壁厚较均匀并且可以成形较深的塑件。

塑件设计

真空成形对于塑件的几何形状、尺寸精度、塑件的深度与宽度之比、圆角、脱模斜度、加强肋等都有具体要求。

真空成形对于塑件的几何形状和尺寸要求

用真空成形方法成形塑件，成形后冷却收缩率较大，很难得到较高的尺寸精度。一般凸模真空成形时，塑件内部尺寸精确；而凹模真空成形时，塑件外部尺寸精确。

塑件的深度与宽度（或直径）之比

塑件的深度与宽度（或直径）之比称为引伸比，引伸比在很大程度上反映了塑件的难易程度。引伸比越大，成形越难。引伸比和塑件的均匀程度有关，引伸比过大会使最小壁厚处变得非常薄，这时应选用较厚的塑料来成形。引伸比和塑料品种、成形方法有关。一般采用的引伸比为 0.5 ~ 1，最大不超过 1.5。
图 9.15 带有气体缓冲装置的真空成形

1—推力杆; 2—上凹模; 3—缓冲活塞; 4—空气管路; (a)—真空管路

对于厚度为 0.5 mm 的型坯, 辅助凸模真空成形时, 其极限拉深比及制品和型坯表面积之比见表 9-6。

表 9-6

<table>
<thead>
<tr>
<th>塑料种类</th>
<th>H/D</th>
<th>S₂/S₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>2:1</td>
<td>4:2</td>
</tr>
<tr>
<td>乙酸纤维素塑料</td>
<td>1:1.5</td>
<td>2:1</td>
</tr>
<tr>
<td>聚碳酸酯</td>
<td>1:1.75</td>
<td>2:1</td>
</tr>
<tr>
<td>高密度聚乙烯</td>
<td>1.5:1</td>
<td>2.5:1</td>
</tr>
<tr>
<td>聚丙烯</td>
<td>1.5:1</td>
<td>3:1</td>
</tr>
<tr>
<td>抗冲击聚苯乙烯</td>
<td>2:1</td>
<td>5:1</td>
</tr>
<tr>
<td>PVC</td>
<td>1:1</td>
<td>4:1</td>
</tr>
</tbody>
</table>
制品的结构应圆滑过渡,圆角半径不小于型坯厚度。凹模真空成形时,视制品的深度不同,从底到壁的过渡半径应不同,见表所示。

凹模真空成形底到壁的过渡半径

<table>
<thead>
<tr>
<th>制品的深度</th>
<th>过渡半径</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤50</td>
<td>5~8</td>
</tr>
<tr>
<td>>50 ~ 100</td>
<td>8~10</td>
</tr>
<tr>
<td>>100 ~ 150</td>
<td>10~20</td>
</tr>
</tbody>
</table>

凸模真空成形底和壁之间的最小圆角半径为。对交叉的平面,其倒角的斜面高度不应小于。厚壁制品的倒角斜面高度不应小于型坯的厚度。

斜度在制品上应有工艺倾斜面,凹模成形时外表面上的倾斜角不应小于;凸模成形时内表面上的倾斜角不应小于,以便于从模具中取出制品。对较软的薄壁制品,倾斜面可稍小一些。

加强肋在制品最薄弱的截面上要有加强肋,可减少型坯的厚度,缩短加热时间,降低制品成本。加强肋应沿制品外形或面的方向配置。

模具设计真空成形模具设计包括:恰当地选择真空成形的方法和设备;确定模具形状和尺寸;了解成形塑件的性能和生产批量,选择合适的模具材料。

模具的结构设计

1. 抽气孔的设计
 - 抽气孔的大小应适合成形塑件的需要,一般对于流动性好、厚度薄的塑料板材,抽气孔要小些,反之可大些。
 - 一般常用的抽气孔直径是,最大不超过板材厚度的。如加工聚乙烯时,抽气孔径为;加工厚度以上、和塑化时,为。对其他硬薄板坯,为。
 - 对硬厚板材,应小于;对板坯厚度大于时,应增大到。孔间距为。为减小钻孔难度和减小流体阻力可钻阶梯孔,孔径。

2. 型腔尺寸
 - 真空成形模具型腔尺寸其计算方法与注射模型腔尺寸计算相同。对成形制品精度影响最大。
塑料片材收缩率，通常用室温下模具与塑件的相应直线尺寸之差，与塑件相应直线尺寸之比来表示。可用下式表示

\[S = \frac{A - B}{B} \times 100\% \]

其中，
- \(A \)——计算收缩率；
- \(B \)——室温下模具的直线尺寸；
- \(C \)——室温下塑件的直线尺寸。

由于各生产企业所采用的工艺配方不一，所以收缩率也有所差异，在设计制作模具时考虑收缩率十分重要，因为吸塑制品是在预定的张力架内加热生产，待冷却后随即取消张力，片材开始自由收缩。例：某厂生产蛋糕盒，产品尺寸外径为200 mm，高100 mm，选用上海解放塑料厂生产的透明0012片材，其收缩率为0.15，吸塑模为凹模，模腔内径为300 mm，模腔高为300 mm，选用的是透明片材。

若采用凸模生产，计算尺寸时必须减去料厚才是模具尺寸。

制品收缩率取决于塑料性质、成形方法以及工艺参数，真空成形制品收缩率见表

<table>
<thead>
<tr>
<th>厚度</th>
<th>凹模成形收缩率</th>
<th>凸模成形收缩率</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>250 mm</td>
<td>50 mm × 0.004</td>
<td>251 mm</td>
</tr>
</tbody>
</table>

标准厚度	PVC	ABS
2 | 0.7 | 0.6
2 | 0.5 | 0.5
1 | 0.7 | 0.7
0.7 | 0.8 | 0.7
4 | — | —
2 | — | 0.6
2 | — | 0.6
成形光面制品时，与制品接触的模具表面应精加工，表面粗糙度值为 Ra = 0.16 μm。成形几个制品时，不采用凸模，宜采用多模腔阴模，以防板坯褶皱。如果表面粗糙度值太大，塑料板黏附在型腔表面上不易脱模，因此真空成形模具的表面粗糙度值应较小。其表面加工后，最好进行喷砂处理。

加热、冷却装置

对于板材的加热，通常采用电阻丝或红外线。电阻丝温度可达 350 ~ 450 °C，对于不同塑料板材所需的不同成形温度，一般是通过调节加热器和板材之间的距离来实现的。通常采用的距离为 80 ~ 120 mm。

模具温度对塑件的质量及生产率都有影响。如果模温过低，塑料板和型腔一接触就会产生冷斑或内应力，以致产生裂纹；而模温太高，塑料板可能黏附在型腔上，塑件脱模时会变形，而且延长了生产周期。因此模温应控制在一定范围内，一般在 50 °C 左右。各种塑料板材真空成形加热温度与模具温度见表 9 - 10。

<table>
<thead>
<tr>
<th>表 9 - 10</th>
<th>真空成形塑料板材加热温度与模具温度</th>
<th>℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>塑料种类</td>
<td>加热温度</td>
<td>模具温度</td>
</tr>
<tr>
<td>低密度聚乙烯</td>
<td>121 ~ 191</td>
<td>80 °C ~ 90 °C</td>
</tr>
<tr>
<td>聚丙烯</td>
<td>149 ~ 202</td>
<td>80 °C ~ 90 °C</td>
</tr>
<tr>
<td>聚氯乙烯</td>
<td>135 ~ 180</td>
<td>80 °C ~ 90 °C</td>
</tr>
<tr>
<td>聚苯乙烯</td>
<td>182 ~ 193</td>
<td>80 °C ~ 90 °C</td>
</tr>
<tr>
<td>聚碳酸酯</td>
<td>149 ~ 177</td>
<td>20 °C ~ 30 °C</td>
</tr>
<tr>
<td>PMMA</td>
<td>110 ~ 160</td>
<td>20 °C ~ 30 °C</td>
</tr>
<tr>
<td>PC</td>
<td>227 ~ 246</td>
<td>20 °C ~ 30 °C</td>
</tr>
<tr>
<td>PA - 6</td>
<td>216 ~ 221</td>
<td>20 °C ~ 30 °C</td>
</tr>
<tr>
<td>有机玻璃</td>
<td>132 ~ 163</td>
<td>20 °C ~ 30 °C</td>
</tr>
<tr>
<td>聚酰胺</td>
<td>—</td>
<td>10 °C</td>
</tr>
<tr>
<td>醋酸纤维素</td>
<td>37</td>
<td>10 °C</td>
</tr>
<tr>
<td>聚碳酰胺</td>
<td>—</td>
<td>10 °C</td>
</tr>
</tbody>
</table>

塑件的冷却一般不单靠接触模具后的自然冷却，要增设风冷或水冷装置加速冷却。风冷设备简单，只要压缩空气喷即可。水冷可用喷雾式，或在模内开冷却水道。冷却水道应距型腔表面 80 mm 以上，以避免产生冷斑。冷却水道的开设有不同的方法，可在模具上打孔或铣槽，用铣槽的方法必须使用密封元件并加盖板，也可将铜管或钢管铸入模具内。

在批量生产时必须对模具实施温度控制。对于铝合金等铸件制造模具时，可在铸件中埋入铜管作为热成形模具的冷却回路。但在埋入铜管时必须与抽真空不相干扰。为了避免出现上述现象，可在模具中安装铅管作为冷却水道。在铅管的入水口及出水口都有专用的水管快速接头。在模具停止使用时，冷却水管能将冷却水全部排除。

为了对模具实施温度控制，在生产前通入温度为 90 ~ 110 °C 的温水，以提高模具温度。进入正常生产后，则根据环境温度的变化通入温度为 50 ~ 60 °C 的温水进行循环，以使模具温度保持在 10 °C 范围内。在生产中还要根据经验进行调节。

成形周期较短时，模具温度较难以控制，可以用冷却装置通入 9 ~ 11 ℃ 的水进行循环。
9.3 真空成形模具

9.3.1 真空成形凸模材料

<table>
<thead>
<tr>
<th>名称</th>
<th>材质</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>木模</td>
<td>松木、扁柏、桃木</td>
<td>试制、少量生产</td>
</tr>
<tr>
<td>树脂模</td>
<td>环氧树脂、聚酯树脂、酚醛树脂、树脂石膏</td>
<td>试制、批量试产</td>
</tr>
<tr>
<td>金属模</td>
<td>铝合金等铸件</td>
<td>批量生产</td>
</tr>
</tbody>
</table>

9.3.2 真空成形凹模材料

<table>
<thead>
<tr>
<th>名称</th>
<th>材质</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>树脂模</td>
<td>环氧树脂、多孔陶瓷材料</td>
<td>试制、小批量生产</td>
</tr>
<tr>
<td>金属模</td>
<td>镍电铸、精密铸造、喷镀金属、切削加工</td>
<td>批量生产</td>
</tr>
</tbody>
</table>

9.3.3 压缩空气成形模具

压缩空气成形工艺及其特点

1. 塑件成形过程是将塑料板材置于加热板和凹模之间, 固定加热板, 如图所示; 这时, 塑料板材只被轻轻地压在模具刃口上, 然后, 在加热板抽出空气的同时, 从位于型腔底部的空气口向型腔中送入空气, 使被加工板材紧贴加热板, 如图所示; 这样塑料板很快被软化, 达到适合于成形的温度。这时加强从加热板送出的空气, 使塑料板材逐渐贴紧模具。与此同时, 型腔内的空气通过其底部的通气孔迅速排出, 最后使塑料板紧贴模具, 如图所示; 待板材冷却后, 停止从加热板喷出压缩空气, 再使加热板下降, 对塑件进行切边, 如图所示; 在加热板回升的同时, 从型腔底部送入空气使塑件脱模后, 取出塑件, 如图所示。

压缩空气成形的方法与真空成形的原理相同, 都是使加热软化的板材紧贴模具成形。所不同的是对板材所施加的成形外力由压缩空气代替抽真空。在真空成形时, 很难达到对板材施加$+\#$以上的成形压力。而用压缩空气时, 可对板材施加$+\#$以上的成形压力。由于成形压力很高, 因而用压缩空气时可以获得完满模具形状的塑件及深腔的塑件。

压缩空气成形有很多地方与真空成形相同, 如塑件的几何形状和尺寸精度、塑件的引伸比、圆角、斜度和加强肋等, 所以在这里不再叙述。

9.3.4 压缩空气成形模具

压缩空气成形模具结构

图所示是压缩空气成形用的模具结构, 它与真空成形模具的不同点是增加了模具型
压缩空气成形工艺过程

因此塑件成形后，在模具上就可将余料切除。另一不同点是加热板作为模具结构的一部分，塑料板直接接触加热板，因此加热速度快。

图

压缩空气成形模具

—加热棒；

—加热板；

—热空气室；

—面板；

—空气孔；

—型刃；

—凹模；

—底板；

—通气孔；

—压缩空气管

压缩空气成形的塑件，其壁厚的不均一性随着成形方法不同而异。采用凸模成形时，塑件底部厚，而采用凹模成形时，塑件底部薄。

对于大型薄板材用凸模成形较为有利，而小型厚板材则用凹模成形较为有利。

模具设计要点

压缩空气成形的模具型腔与真空成形模具型腔基本相同。压缩空气成形模具的主要特点是在模具边缘设置型刃。

在模具的边缘设置型刃是为了切除成形中的余料，其形状与尺寸如图所示。常用的型刃是把顶端削平，以的圆弧与两侧面相连。型刃的角度以为宜，它的尖端必须比型腔的端面高出板材的厚度加上，成形时，放在凹模型腔端面上的板材同加热板之间就能形成间隙，此间隙可使板材在成形期间不与加热板接触，避免板材过热造成产品缺陷。
为了能可靠地夹紧坯料板材，要求型刃的刀尖与加热板有极高的平行度及平面度，型刃四周必须保持0.02 mm以下的平行度。但是，由于加热板和模具在热及负荷作用下会产生变形，型刃的平行度也会有误差。为此，常在型刃的下面设置橡胶缓冲垫，用以补偿误差的情况。

图中所示型刃的形状和尺寸：

- 型刃;
- 凹模;
- 底板

什么是挤出吹塑成形?

什么是吹胀比?什么是延伸比?

凸模真空成形与凹模真空成形，塑件尺寸精度有何不同?

什么是塑件的引伸比?如何确定?

压缩空气成形用的模具结构有何特点?

压缩空气成形的塑件其壁厚是否均一?

中空吹塑成形分为几种形式?

对吹塑塑件的设计包括哪些方面?

习题

1.
2.
3.
4.
5.
6.
7.
8.
10.1 塑料注射模具制造与实例

10.1.1 塑料注射模具制造特点

1. 塑料注射模具是采用注射成形方法生产塑料制品的必备工具。塑料注射模具的制造过程是指根据塑料制品零件的形状、尺寸要求，制造出结构合理、使用寿命长、精度较高、成本较低的能批量生产出合格产品的模具的过程。

2. 塑料注射模具制造过程的基本要求
 a. 要保证模具质量：在正常生产条件下，按工艺过程所加工的模具应能达到设计图样所规定的全部精度和表面质量要求，并能够批量生产出合格的产品。模具的质量应该由制造工艺规程所采用的加工方法、加工设备及生产操作人员来保证。
 b. 要保证模具制造周期：模具制造周期是指在规定的日期内，将模具制造完毕。模具制造周期的长短，反映了模具生产的技术水平和组织管理水平。在制造模具时，应力求缩短模具制造周期，这就需要制定合理的加工工序，应尽量采用计算机辅助设计（CAD）和计算机辅助制造（CAM）。
 c. 要保证模具使用寿命：模具的使用寿命是指模具在使用过程中的耐用程度，一般以模具生产出的合格制品的数量作为衡量标准。高的使用寿命反映了模具加工制造水平，是模具生产质量的重要指标。
 d. 要保证模具成本低廉：模具成本是指模具的制造费用。由于模具是单件生产，机械化、自动化程度不高，所以模具成本较高。为降低模具的制造成本，应根据制品批量大小，合理选择模具材料，制定合理的加工规程，并设法提高劳动生产率。
 e. 要不断提高加工工艺水平：模具的制造工艺要根据现有条件，尽量采用新工艺、新技术、新材料，以提高模具的生产效率，降低成本，使模具生产有较高的技术经济效益和水平。
 f. 要保证良好的劳动条件
模具的制造工艺过程要保证操作工人有良好的劳动条件，防止粉尘、噪音、有害气体等污染源产生。

塑料注射模具制造过程

塑料模具的制造过程包括以下内容：

(1) 模具图样设计
模具图样设计是模具生产中最关键的工作，模具图样是模具制造的依据。模具图样设计包括以下内容：

(1) 了解所要生产的制品
根据塑料制品图掌握制品的结构特点和制品的用途。不同用途的制品有不同的形状、尺寸公差以及不同的表面质量要求，是否能够通过塑料注射模具生产出合格的产品是首先要考虑的问题。其次掌握塑料制品所用塑料的模塑特性，考虑会直接影响模具设计的特性，如塑料的收缩率、塑料的流动特性以及注射成形时所需的温度条件。

(2) 了解所要生产制品的批量
制品生产的批量对模具的设计有很大的影响，根据制品的需求数量，可以确定模具的使用寿命，模具的型腔数目（或模具的套数）以及模具所需的自动化程度和模具的生产成本。对于大量需求的制品应尽可能采用多型腔模具，热流道模具和适于全自动生产的模具结构；对于需求量较少的制品，在满足制品质量要求的前提下应尽量减少模具成本。

(3) 了解生产塑料制品所用设备
塑料注射模具要安装到塑料注射成形机上使用，因此注射机的模具安装尺寸、顶出位置、注射压力、合模力以及注射量都会影响到模具的尺寸和结构。另外，注射成形机的自动化程度也限制了模具的自动化程度，例如带有机械手的注射机就可以自动取出注射成形制品和浇注系统凝料，方便地完成自动化生产过程。

(4) 确定模具设计方案
在清楚了解了生产的塑料制品之后，即可以开始模具方案设计，其过程包括：

(1) 设计前应确定的因素
设计前应确定的因素包括：所用塑料种类及成形收缩率；制品允许的公差范围和合适的脱模斜度；注射成形机参数；模具所采用的模腔数以及模具的生产成本等。

(2) 确定模具的基本结构
根据已知的因素确定所设计模具的外形尺寸；选择合理的制品分型面；确定模具所应采用的浇注系统类型；确定塑料制品由模具中的推出方式以及模腔的基本组成。在确定模具的基本结构时还应考虑模腔是否采用侧向分型机构，是否采用组合模腔，模腔的冷却方式和模腔内气体的排出。

(3) 确定模具中所使用的标准件
在模具设计中应尽可能多地选择标准件，包括：采用标准模架、模板；采用标准的导柱、导套、浇口套及推杆等。采用标准件可以提高模具制造精度，缩短模具生产周期，降低生产成本。

(4) 确定模具中模腔的成形尺寸
根据塑件的基本尺寸，运用成形尺寸的计算公式，确定模具模腔各部分的成形尺寸。
确定模具所使用的材料并进行必要的强度、刚度校核。

根据强度、刚度校核公式可以对分型面、型腔、型芯、支承板等模具零件进行强度和刚度校核，以确保满足使用要求。

完成模具图样的设计图纸，其中包括模具设计装配图和模具加工零件图。

在确定模具设计方案时，为提高效率可以采用“类比”的方法，即将以前设计制造过类似制品的模具结构套用到新制品的模具结构上，这样可简化设计过程，特别适合于刚刚开始从事模具设计的技术人员。

制定模具加工工艺规程，工艺规程是按照模具设计图样，由工艺人员制定出整个模具或各个零部件制造的工艺过程。模具加工工艺规程通常采用卡片的形式送到生产部门。一般模具的生产以单件加工为主，工艺规程卡片是以加工工序为单位，简要说明模具或零部件的加工工序名称、加工内容、加工设备以及必要的说明，它是组织生产的依据。表10-1为模具型芯的加工工艺卡。

<table>
<thead>
<tr>
<th>零件名称</th>
<th>型芯编号</th>
<th>件数</th>
<th>工序号</th>
<th>工序名称</th>
<th>工序内容</th>
<th>加工地点</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>车</td>
<td>车外圆、端面</td>
<td>车床</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td>铣</td>
<td>铣头部、平面</td>
<td>铣床</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>热处理</td>
<td>淬火、回火</td>
<td>真空热处理炉</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>磨</td>
<td>磨外圆</td>
<td>外圆磨床</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td>钳</td>
<td>检验、装配与型芯固定板研配</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

制定工艺规程的基本原则是：保证以最低的成本和最高的效率来达到设计图样上的全部技术要求。所以在制定工艺规程时应满足：

1. 设计图样要求
 即工艺规程应全面可靠和稳定地保证达到设计图样上所要求的尺寸精度、形状精度、位置精度、表面质量和其他技术要求。

2. 最低成本要求
 所制定的工艺规程应在保证质量和完成生产任务的条件下，使生产成本降到最低，以降低生产成本。
3. 模具的整体价格。

4. 生产时间要求

工艺规程要在保证质量的前提下，以较少的工时来完成加工过程，以提高生产率。

5. 生产安全要求

工艺规程要保证操作工人有良好的安全劳动条件。

6. 组织模具零部件的生产

按照零部件的加工工艺卡片组织零部件的生产，一般可以采用机械加工、电加工、铸造、挤压等方法完成零部件的加工过程，制造出符合设计要求的零部件。

零部件的生产加工质量直接影响到整个模具的使用性能和寿命。在实际生产中，零件加工质量包括机械加工精度和机械加工表面质量两部分内容。机械加工精度指零部件经加工后的尺寸、几何形状及各表面相互位置等参数的实际值与设计图样规定的理想值之间相符合（或相近似）的程度，而它们之间不相符合（或差别）的程度则称为加工误差。加工精度在数值上通过加工误差的大小来表示，即精度越高，加工误差越小。机械加工表面质量是指零部件经加工后的表面粗糙度、表面硬度、表面缺陷等物理性能。

在零部件加工中，由于种种因素的影响，零部件的加工质量必须允许有一定的变动范围（公差范围），只要实际的加工误差在允许的公差范围之内，则该零部件就是合格的。

7. 塑料注射模具装配与调试

按规定的技术要求，将加工合格的零部件，进行配合与连接，装配成符合模具设计图样装配图要求的模具。

塑料注射模具的装配过程也会影响模具的质量和模具的使用寿命。将装配好的模具固定在规定的注射成形机上进行试模（也可以在专门的试模机上试模）。在试模过程中，边试边调整、校正，直到生产出合格的塑料制品为止。

8. 模具检验与包装

将试模合格的模具进行外观检验，打好标记，将试出的合格的塑料制品随同模具进行包装，填好检验单及合格证，交付生产部门使用。

9. 模具制造水平的提高

塑料注射模具制造过程，反映了模具制造技术水平的高低，其衡量的标准如下：

10. 模具制造周期

模具的制造周期反映了模具设计、生产技术水平。在模具制造中应设法缩短模具制造周期，采用计算机辅助设计模具，以及数控机床加工技术，可以大大缩短模具的制造周期。

11. 模具使用寿命

提高模具的使用寿命是一项综合性技术问题。在模具制造过程中要保证模具的结构设计合理，制造工艺方法正确，以及热处理工艺合理等。这样才能保证模具有高的使用寿命。

12. 模具制造精度

模具的精度可分成两个方面：一方面是成形塑料制品所需的精度，即成形型腔、型芯等的精度；另一方面是模具本身所需的精度，如平行度、垂直度、定位及导向配合精度。模具的制造精度受到加工方法、加工设备自身精度的限制。

13. 模具制造成本
在保证模具质量的前提下，模具成本越低，表明模具技术水平越高。这就要求在制造模具时，合理地选择模具材料和加工方法，以便最大限度地降低模具造价。

模具标准化程度

模具标准化是专业化生产的重要措施，也是系统解决提高劳动生产率，提高产品质量和改善劳动组织管理的重要措施。不断扩大模具标准化范围，组织专业化生产，是提高模具制造水平的重要途径。

塑料注射模具技术要求

为保证模具的制造质量就必须达到一定的制造技术要求，规定了塑料注射模具零件技术条件，规定了塑料、橡胶模具技术条件。标准规定了塑料模具的零件加工和装配的技术要求，以及模具的材料、验收、包装、运输、保管的基本规定。

表10-2 模具零件加工技术要求

零件名称	加工部位	条件
动定模板	厚度	平行度 0**1 *2 *,以内
导柱孔	孔径公差	+)
导柱孔	孔距公差	3 *2 *, 44垂直度 (**1 *2 *,以内
导柱压入部分直径	精磨	56
滑动部分直径	精磨	7)
直线度	无弯曲变形	(**1 *2 *,以内
硬度	淬火、回火	+89 以上
导柱套外径	磨削加工	56
内径	磨削加工	+)
内外径关系	同轴度	*2 *(44
硬度	淬火、回火	+89 以上

表10-3 模架装配精度要求

| 模具组装后的精度 | 浇口板上平面对底板下平面的平行度 | 0**1 *2 *
| 导柱导套轴线对模板的垂直度 | (**1 *2 *
| 固定结合面间隙 | 不允许有
| 分型面闭合时的贴合间隙 | ±0.02 mm
| 硬度 | 淬火、回火 | +89 以上

10.1.2 塑料注射模具制造与实例
塑料注射模具零件常用材料

塑料注射模具结构比较复杂，组成一套模具具有各种各样的零件，各个零件在模具中所处的位置、作用不同，对材料的性能要求就有所不同。选择优质、合理的材料，是生产高质量模具的保证。

塑料注射模具用材料的基本要求

对于塑料注射模具零件的常用材料有如下要求：

1. 具有良好的机械加工性能
 塑料注射模具零件的生产，大部分由机械加工完成。良好的机械加工性能是实现高速加工的必要条件。良好的机械加工性能能够延长加工刀具寿命，提高切削性能，减小表面粗糙度值，以获得高精度的模具零件。

2. 具有足够的表面硬度和耐磨性
 塑料制品的表面粗糙度和尺寸精度、模具的使用寿命等，都与模具表面的粗糙度、硬度和耐磨性有直接的关系。因此，要求塑料注射模具的成形表面有足够的硬度，其淬火硬度应不低于55HRC，以便获得较高的耐磨性，延长模具的使用寿命。

3. 具有足够的强度和韧性
 由于塑料注射模具在成形过程中反复受到压应力（注射机的锁模力）和拉应力（注射模型腔的注射压力）的作用，特别是大中型和结构形状复杂的注射模具，要求其模具零件材料必须有高的强度和良好的韧性，以满足使用要求。

4. 具有良好的抛光性能
 为了获得高光洁表面的塑料制品，要求模具成形零件表面的粗糙度值小，因而要求对成形零件表面进行抛光以减小其表面粗糙度值。为保证抛光性，所选用的材料不应有气孔，粗糙杂质等缺陷。

5. 具有良好的热处理工艺性
 模具材料经常依靠热处理来达到必要的硬度，这就要求材料的淬硬性及淬透性好。塑料注射模具的零件往往形状较复杂，淬火后进行加工较为困难，甚至根本无法加工，因此模具零件应尽量选择热处理变形小的材料，以减少热处理后的加工量。

6. 具有良好的耐腐蚀性
 一些塑料及其添加剂在成形时会产生腐蚀性气体，因此选择的模具材料应具有一定的耐腐蚀性，另外还可以采用镀镍、铬等方法提高模具型腔表面的抗蚀能力。

7. 表面加工性能好
 塑料制品要求外表美观，花纹装饰时，则要求对模具型腔表面进行化学腐蚀花纹，因此要求模具材料蚀刻花纹容易，花纹清晰、耐磨损。

10.1.3 塑料注射模具零件常用材料

1. 结构零件用钢
 塑料注射模具中的结构零件一般采用碳素结构钢或低合金钢。为碳素结构钢，其机械性能较差，但价格低廉，常用于塑料注射模的动模及定模座板、垫块等零件。
此类钢为优质碳素结构钢,可以用来制造形状较简单,精度要求不高的塑料注射模具,但其使用寿命较低,抛光性不好。

钢可以通过调质处理来改善其性能,可以用于制造塑料注射模具的推板、型芯固定板、支承板等零件。

钢为碳素工具钢,其含碳量高,淬火硬度可达,可用于制造导柱、导套、斜销、推杆等塑料注射模具零件。

钢为低合金钢,可以用于制造形状不太复杂的中小型塑料注射模具。

钢可以进行淬火、调质处理,制作型芯、推杆等零件。

为满足塑料注射模具对材料的各种要求,目前有许多专用的模具钢:

这是一种可以预硬化的塑料模具钢,预硬化后硬度为,适用于制作塑料注射模具型腔,其加工性能和表面抛光性较好。

此种钢为析出硬化钢。预硬化后时效硬化,硬度可达。热变形极小,可做镜面抛光,特别适合于腐蚀精细花纹。可用于制作尺寸精度高,生产批量大的塑料注射模具。

马氏体时效钢。在未加工前为固熔体状态,易于加工。精加工后以进行时效,硬度可达。适用于制造要求尺寸精度高的小型塑料注射模具,可做镜面抛光。

为易切预硬化钢,可做镜面抛光。其抗拉强度高,常用于大型注射模具。调质后硬度为,淬火时可空冷,硬度可达。

钢适用于型腔腐蚀花纹,属于时效硬化钢。调质后硬度,可用普通高速钢刀具加工。时效后硬度。

钢为耐腐蚀钢。可以空冷淬火,属于不锈钢类型。空冷淬硬可达,适于有腐蚀性的聚氯乙烯类塑料制品的注射模具。

有色金属材料和非金属材料也是塑料注射模具中经常用到的材料。

铍铜合金是在铜中加入以下的铍而形成的合金。铍铜合金通常采用精密铸造或压力铸造来制造精密、复杂型腔。可采用此种方法方便,迅速地复制机械加工无法制作的复杂型腔。铍铜合金机械性能好,热处理硬度可达,尺寸精度高并且导热性能好。铍铜合金价格较高,因此,一般仅用其制造型腔镶件,镶入模具中。

锌基合金常用的锌基合金是把锌作为主要成分并加入,等元素形成合金。锌基合金材料……

· 第10章 塑料注射模具制造与实例
熔融温度低，能简单地用砂型铸造、石膏型铸造、精密铸造等方法成形。由于其熔融温度低，表面质量较好，加工周期短，经常被用在注射次数少的试模模具和小批量生产的注射成形模具。因锌基合金铸造后产生收缩较大，所以在铸造后应放置24小时使其尺寸稳定后再进行加工。锌基合金的使用温度较低，当温度高于150 °C ~ 200 °C时容易引起变形。所以锌基合金仅适用于模具温度较低的塑料注射模具。

环氧树脂应用在试制及成形批量很少的模具上。纯环氧树脂中一般加铝粉等填料以改善其强度、硬度、收缩率等性能。采用环氧树脂制模时，只要有模型，就能在相当短的时间内制造出模具，因此对于试制产品是非常有利的。

塑料注射模具零件所使用的材料可以根据实际情况选用。表10－4为常用塑料注射模具零件材料的选用与热处理。

<table>
<thead>
<tr>
<th>模具零件</th>
<th>使用要求</th>
<th>模具材料</th>
<th>热处理说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>强度高、耐磨性好、热处理变形小、有时还要求耐腐蚀</td>
<td>用于成形温度高、成形压力大的模具</td>
<td>5CrMnMo、5CrNiMo、3CrW8V</td>
<td>淬火、中温回火</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T8、T8A、T10A、T12、T12A</td>
<td>≥55 HRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38CrMoAlA</td>
<td>≥55 HRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45、50、55、40Cr、42CrMo、35CrMo、40MnB、40MnVB、33CrNi3MoA、37CrNi3A、30CrNi3A</td>
<td>≥55 HRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10、15、20、12CrNi2、12CrNi3、12CrNi4、20CrMnTi、20CrNi4</td>
<td>≥55 HRC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

· 309·
10.2 塑料注射模具零件常用加工方法

10.2.1 常用加工方法

1. 机械加工

机械加工是模具制造中的重要加工方法，模具中的大多数零件都是通过机械加工方法制造的。常用的机械加工设备如下：

普通切削加工机床

常用的普通切削加工机床有车床、钻床、铣床、刨床、磨床和镗床等。

车床

机械加工

塑料注射模具制造与实例
车床是以加工转体零件为主的机械加工机床。车床的种类很多，包括卧式车床（普通车床）、立式车床、转塔车床、自动车床等。车床工作时被加工工件装在卡盘上，主轴使工件做旋转运动，刀具在进给箱的带动下做直线运动，完成切削加工。在模具零件加工中，可以使用车床加工圆形型腔、型芯、导柱、导套等转体零件。

钻床是以加工孔为主的机械加工机床，常见的钻床有台式钻床、立式钻床、摇臂钻床、深孔钻床等。钻床工作是将被加工工件固定在工作台上，钻头旋转并做直线运动完成孔的加工。利用钻床可以加工模具上的各种孔，深孔钻床还用来加工冷却水道等较深的孔。

铣床可以加工平面、曲面等各种表面，常见的铣床有立式铣床、卧式铣床、万能铣床、工具铣床等，铣床可以加工出平面、沟槽、曲面等形状。

刨床主要用于平面加工，常见的刨床有牛头刨床、龙门刨床、插床等。牛头刨床工作时，被加工工件用平口钳安装于工作台上，工作台可以做左右移动。刨刀固定在滑枕上的刀架中，刨刀做前后移动，通过刨刀与工件的相对运动，完成平面加工。龙门刨床用于加工尺寸较大的工件。插床又称立式牛头刨床，主要用来加工工件的内表面，如键槽、多边形孔。

磨床是用砂轮或其他磨料对金属工件进行加工的机床。常见磨床有平面磨床、外圆磨床、内圆磨床等。磨削也是一种切削，砂轮表面上的每个磨粒，可以近似地看成一个微小的刀齿，对金属表面进行切削。磨削加工精度高、表面粗糙度值小，一般常用于半精加工和精加工。不同的磨削机床可以加工平面、外圆表面、内圆表面以及各种曲面。

数控加工机床简称为数控机床（NC机床），数控就是指把控制机床或其他设备的操作指令（或程序），以数字形式给定的一种控制方式。利用这种控制方式，按照给定程序自动地进行加工的机床称为数控机床。目前数控机床已经得到广泛应用，数控机床的种类有数控车床、数控铣床、数控磨床、加工中心等。图10.1所示为数控车床，其机械部分与普通车床的差别不大。数控车床不仅能够完成普通的车削加工，而且利用数控系统和进给伺服系统复杂曲线组成的转表面。

数控铣床如图10.2所示，数控铣床的机械部分与普通铣床基本相同，工作台可以做横向、纵向和垂直方向的运动，因此普通铣床所能加工的工艺内容，数控铣床都能完成，此外其数控系统通过伺服系统同时控制两个或三个轴同时运动，加工出复杂的三维型面。数控铣床还可以作为数控钻床或数控镗床，加工具有一定尺寸精度要求和一定位置精度要求的孔。

在数控铣床的基础上增加刀具库和自动换刀系统就构成了加工中心。加工中心的刀具库可以存放十几把甚至更多的刀具，由程序控制换刀机构自动调用与更换，这样就可以一次完成多种工艺加工，图10.3所示为加工中心。

与普通机床相比，数控机床的主要优点有：

1. 自动化程度高、生产率高
2. 数控机床对零件的加工是按事先编好的程序自动完成的，操作者除了安放穿孔带或操作键
3. 数控机床可以加工出复杂形状的零件，如曲面、薄壁件等，加工精度高、表面质量好
4. 数控机床可以实现零件的自动检测和控制，提高加工精度和生产率
5. 数控机床可以进行多工序加工，减少零件的装夹次数，提高生产效率
6. 数控机床可以进行自动化生产，减少人工劳动，降低生产成本

塑料注射模具零件常用加工方法

1. 数控车床
2. 数控铣床
3. 数控磨床
4. 加工中心

在注塑模具制造中，常用到的加工方法有：

1. 数控车床：用于加工模具的圆筒、圆锥、圆环等零件
2. 数控铣床：用于加工模具的型腔、型芯、加强筋等零件
3. 数控磨床：用于加工模具的内外表面和圆角等零件
4. 加工中心：可以进行多工序加工，减少零件的装夹次数，提高生产效率

在实际生产中，根据模具的具体形状和精度要求，选择合适的加工方法和机床类型。
数控机床
—主轴箱；
—卡盘；
—刀架；
—顶尖；
—数控系统；
—床身

图10.1
1—2—3—4—5—6

数控铣床
—主轴；
—铣刀；
—工作台；
—升降台(进给箱)；
—数控装置

图10.2
1—2—3—4—5

加工中心
—刀具库；
—主轴；
—数控系统；
—防护罩；
—工作台；
—床身

图10.3
1—2—3—4—5—6

数控机床具有很高的控制精度，可以保证很高的定位精度和重复定位精度，所以其加工零件的精度高，而且产品尺寸一致性好，产品质量稳定。同时数控机床的自动加工方式还可以避...
免生产者的人为操作误差,保证了产品质量。

控制灵活、适应性强

数控机床上要改变控制程序,即可以完成对不同工件的加工,这就为单件、小批量生产创造了便利条件,非常适合于模具零件的加工。

数控机床编程与加工

在数控机床上加工零件,要把待加工零件的全部工艺过程、工艺参数等加工信息以代码的形式记录在控制介质上,用控制介质上的信息来控制机床,自动实现零件的全部加工过程。从零件图纸到获得数控机床所需控制介质的全过程称为编程。

数控编程的一般步骤如下:

1. 分析零件图、确定工艺过程
 对需要在数控机床加工的零件,要根据零件图分析其特点,选择合适的数控机床,确定加工工艺路线,选择合适的刀具和切削用量,充分发挥机床的效能。

2. 数值计算
 根据零件的几何尺寸和所确定的加工路线及设定的坐标系,计算出数控机床所需输入的数据。数值计算的复杂程度,取决于零件的复杂程度和数控系统的功能。

3. 编写加工程序
 根据计算出的加工路线数据和已确定的工艺参数,按照数控系统规定的功能指令代码和程序段格式编写零件加工程序。

4. 程序输入
 将编写好的加工程序采用手动数据输入或介质(穿孔带、磁盘等)输入、通信输入等方式输入数控机床。

5. 校对检查程序
 校对机床的运动轨迹是否正确,检查更正由于计算和编写程序造成的错误。

6. 试加工
 程序校验结束后,必须在机床上试加工,试加工的零件应符合零件图纸的质量和技术要求,试加工零件检验合格后,数控编程工作完成。

数控编程一般分为手工编程和自动编程。手工编程就是从分析零件图、确定工艺过程到程序输入和校对检查都是由人工完成。对于加工形状简单、计算量小、程序不多的零件,采用手工编程较容易,而且方便快捷、成本低。自动编程是利用计算机专用软件来编制数控加工程程序,编程人员只需根据零件图样的要求,使用数控语言,由计算机自动地进行数值计算及处理,编写出加工程序。

数控程序由程序号、程序内容和程序结束三部分组成。

例如:

程序号

程序内容

程序结束

例如:

N10 G92 X45 Y30
N20 G90 G00 X20 T01 S300 M03
N30 G01 X -10 Y -8 F100
N40 X0 Y0
N50 X20 Y30
程序号为程序的开始，每个程序都要有程序编号以区别于其他程序。在编号前采用程序编号地址码，如英文字母“O”等为程序编号地址码。

程序内容是整个程序的核心，它由许多程序段组成。每一个程序段则为若干个数据字组成，每个字是控制系统的具体指令。程序段按照一定的格式编写，通常采用的格式为“字地址程序段格式”，如图所示。

语句号字——用以识别程序段的编号，由地址码和后面的若干位数字组成。准备功能字——准备功能字又称为功能，它是使数控机床做好其中操作准备的指令，用字母和两位数字表示，从#0到#11共#2种。表为我国机械工业部根据23-标准制定准备功能代码。

尺寸字——尺寸字由地址码、符号及绝对(或增量)数值组成。尺寸字的地址码用英文字母表示，其意义见表。

进给功能字——进给功能字表示刀具中心运动时的进给速度，由地址码和后面的数字组成。这个数字的单位取决于每个系统所采用的进给速度的指定方法。如#*##表示进给速度为##667689。

主轴转速功能字——主轴转速功能字由地址码和数字组成，单位为##7689。例如#1##表示主轴转速##7689。

刀具功能字——刀具功能字由地址功能码和其后面的数字组成，刀具功能的数字是指定的刀号，数字的位数由所用的系统决定。例如#表示第五号刀。

辅助功能字——辅助功能字又称功能，表示机床的一些辅助动作指令，由地址码和后面的两位数字组成，从#0到#11共#2种。表为我国机械工业部根据23-标准制定辅助功能代码。

<table>
<thead>
<tr>
<th>N</th>
<th>G</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>...</th>
<th>F</th>
<th>S</th>
<th>T</th>
<th>M</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>语句</td>
<td>准备</td>
<td>尺寸字</td>
<td>进给</td>
<td>主轴</td>
<td>刀具</td>
<td>辅助</td>
<td>程序</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>号字</td>
<td>功能</td>
<td>字</td>
<td>功能</td>
<td>转速</td>
<td>功能</td>
<td>功能</td>
<td>段结</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>字</td>
<td>字</td>
<td>字</td>
<td>字</td>
<td>字</td>
<td>字</td>
<td>字</td>
<td>字</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

数据字

程序段

10.4

N60 G00 X45
N70 M02

T1 M03 S100 F200

G00 ~ G99 100 10 ~ 5 ISO

G00 ~ G99 100 10 ~ 5 ISO

F10 ~ 6

S100 r/min

T05 M00 ~ M99 100 10 ~ 7 ISO
<table>
<thead>
<tr>
<th>表</th>
<th>准备功能</th>
<th>代码</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00</td>
<td>a</td>
<td>G50</td>
</tr>
<tr>
<td>G01</td>
<td>a</td>
<td>G51</td>
</tr>
<tr>
<td>G02</td>
<td>a</td>
<td>G52</td>
</tr>
<tr>
<td>G03</td>
<td>a</td>
<td>G53</td>
</tr>
<tr>
<td>G04</td>
<td>*</td>
<td>G54</td>
</tr>
<tr>
<td>G05</td>
<td>#</td>
<td>G55</td>
</tr>
<tr>
<td>G06</td>
<td>a</td>
<td>G56</td>
</tr>
<tr>
<td>G07</td>
<td>#</td>
<td>G57</td>
</tr>
<tr>
<td>G08</td>
<td>*</td>
<td>G58</td>
</tr>
<tr>
<td>G09</td>
<td>*</td>
<td>G59</td>
</tr>
</tbody>
</table>

G10 ~ G16 | # | # | # | G60 | h |
G17	c	xy	G61	h
G18	c	xz	G62	h
G19	c	yz	G63	*

G20 ~ G32 | # | # | G64 ~ G67 | # | # |
G33	a	G68	d	#
G34	a	G69	d	#
G35	a	G70 ~ G79	#	#

G36 ~ G39 | # | # | G80 | e |
G40	d	G81 ~ G89	e
G41	d	G90	j
G42	d	G91	j

G43 | d | G92 | * |
G44	d	G93	k
G45	d	G94	k
G46	d	G95	k
G47	d	G96	i
G48	d	G97	i

G49 | d | G98 ~ G99 | # | # | # | #
地址码中英文字母的意义

<table>
<thead>
<tr>
<th>地址码</th>
<th>意义</th>
</tr>
</thead>
<tbody>
<tr>
<td>地址码</td>
<td>意义</td>
</tr>
<tr>
<td>#</td>
<td>程序号、子程序号</td>
</tr>
<tr>
<td>$</td>
<td>程序段号</td>
</tr>
<tr>
<td>%</td>
<td>轴方向的运动</td>
</tr>
<tr>
<td>#</td>
<td>平行于轴方向的第二坐标</td>
</tr>
<tr>
<td>,</td>
<td>平行于轴方向的第三坐标</td>
</tr>
<tr>
<td>/</td>
<td>绕轴坐标的转动</td>
</tr>
<tr>
<td>0</td>
<td>圆弧中心坐标</td>
</tr>
<tr>
<td>1</td>
<td>补偿号指定</td>
</tr>
<tr>
<td>2</td>
<td>功能保持到被注销或被适当程序指令代替</td>
</tr>
<tr>
<td>3</td>
<td>功能仅在所出现的程序段内有作用</td>
</tr>
<tr>
<td>4</td>
<td>功能开始时间</td>
</tr>
<tr>
<td>5</td>
<td>与程序段指令运动同时开始</td>
</tr>
<tr>
<td>6</td>
<td>在程序段指令运动完成后开始</td>
</tr>
<tr>
<td>7</td>
<td>功能停止</td>
</tr>
<tr>
<td>8</td>
<td>程序停止</td>
</tr>
<tr>
<td>9</td>
<td>5号切削液开</td>
</tr>
<tr>
<td>:</td>
<td>5号切削液开</td>
</tr>
<tr>
<td>;</td>
<td>切削液关</td>
</tr>
<tr>
<td><</td>
<td>夹紧</td>
</tr>
<tr>
<td>=</td>
<td>松开</td>
</tr>
<tr>
<td>></td>
<td>不指定</td>
</tr>
<tr>
<td>A</td>
<td>主轴顺时针方向,切削液开</td>
</tr>
<tr>
<td>B</td>
<td>主轴逆时针方向,切削液开</td>
</tr>
<tr>
<td>A</td>
<td>主轴停止</td>
</tr>
<tr>
<td>E</td>
<td>换刀</td>
</tr>
<tr>
<td>J</td>
<td>6号切削液开</td>
</tr>
<tr>
<td>K</td>
<td>5号切削液开</td>
</tr>
<tr>
<td>L</td>
<td>切削液关</td>
</tr>
<tr>
<td>M</td>
<td>互锁旁路</td>
</tr>
<tr>
<td>N</td>
<td>进给范围</td>
</tr>
<tr>
<td>O</td>
<td>进给范围</td>
</tr>
<tr>
<td>P</td>
<td>主轴速度范围</td>
</tr>
<tr>
<td>Q</td>
<td>主轴速度范围</td>
</tr>
<tr>
<td>R</td>
<td>互锁旁路</td>
</tr>
</tbody>
</table>

表10-6

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表10-7

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M00</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M01</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M02</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M03</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M04</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M05</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M06</td>
<td>#</td>
<td>#</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M07</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M08</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M09</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>#</td>
<td>#</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M11</td>
<td>#</td>
<td>#</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M13</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M15</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M17-M18</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M19</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M20-M29</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M30</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M31</td>
<td>#</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M32-M35</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M36</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M37</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M38</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M39</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.2 塑料注射模具零件常用加工方法

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>M40 – M45</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>M46 – M47</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>M48</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>M49</td>
</tr>
<tr>
<td>M49</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M50</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>M51</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>M52 – M54</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>M55</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>M57 1</td>
</tr>
<tr>
<td>M56</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>M58 2</td>
</tr>
<tr>
<td>M57 – M59</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>M60</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>M63 1</td>
</tr>
<tr>
<td>M61</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>M64 2</td>
</tr>
<tr>
<td>M62</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M63 – M70</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>M71</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>M73 1</td>
</tr>
<tr>
<td>M72</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>M74 2</td>
</tr>
<tr>
<td>M73 – M89</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>M90 – M99</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>

注：
1. "#" 表示如选作特殊用途，必须在程序说明中说明。
2. M90 – M99 表示程序结束。

图所示为由直线和圆弧组成的型腔轮廓，采用数控机床对其轮廓进行精加工，其加工余量为。

为了简化程序，一般选直线或圆弧的起点为切削开始点，图所示型腔选择点为切削开始点，其刀具加工路线为。

计算直线与圆弧的交点坐标
如图所示坐标系，点为交点，其坐标值为。
图所示型腔的加工程序为：

```
M0001
N001  G92  G90  X0  Y0
N002  G00  G43  Z2  H01  S300
N003  G01  Z0  M08  F200
N004  G17  G01  G41  X-10  Y17.32  F100
N005  G01  X-30  Y8.66
N006  G03  X-30  Y-8.66  I-5  J-8.66
N007  G01  X-10  Y-17.32
N008  G03  X-10  Y17.32  I-5  J-17.32
N009  G01  G40  X0  Y0  M09
N010  G00  Z200  M05
N011  M02
```

电火花加工

电火花加工的原理是基于工具电极与工件电极（正极与负极）之间脉冲性火花放电时的电腐蚀现象来对工件进行加工，以达到一定形状、尺寸和表面粗糙度要求的加工方法。电火花加工也称放电加工或电蚀加工。当工具电极与工件电极在绝缘液体中靠近时，极间电压将在两极间"相对最靠近点"电离击穿，形成脉冲放电。在放电通道中瞬时产生大量的热能，使金属局部熔化甚至汽化，并在放电爆炸力的作用下，把熔化的金属抛出去，达到蚀除金属的目的。图为电火花加工设备原理图。电火花加工机床一般由四大部分组成。脉冲电源是放电腐蚀的供能装置，由它产生所需重复脉冲，加在工件电极与工具电极上，形成脉冲放电。间隙自动调节器——脉冲电源；放电间隙自动调节器；机床床身；工作液及其循环过滤系统。采用键盘由人工直接输入，程序输入后经检查、模拟型腔轮廓加工过程，确定程序无误后，即可对型腔进行数控铣削。
利用间隙自动调节器可以自动调节极间距离和工具电极的进给速度,维持一定的放电间隙,使脉冲放电正常进行。

机床床身
床身用来实现工件和工具电极的装夹固定,以及调整其相对位置精度的机械系统。

工作液及其循环过滤系统
工作液具有一定的介电能力,有助于产生脉冲式的火花放电,形成放电通道,放电结束后又能恢复极间绝缘状态。工作液能够提高火花放电能量密度,使电蚀产物抛出和排除,并能够冷却工具与工件。工作液常采用煤油,通过循环过滤系统排出杂质,循环使用。

电火花加工特点如下:
脉冲放电的能量密度高
由于脉冲放电的能量密度很高,故可以加工任何硬、脆、韧、软、高熔点的导电材料,在一定的条件下还可以加工半导电和非导电材料,从而扩大模具材料的选用范围。

工具电极与工件间无作用力
加工时,工具电极与工件不接触,二者之间不存在明显的宏观作用力,而且工具材料也不必比工件硬。这不仅有助于工具电极的制造,而且也有利于小孔、窄槽以及各种复杂截面的型孔、曲线孔、型腔等模具零件的加工,并能在淬火之后进行。

工件加工质量高
脉冲放电的持续时间短,放电时所产生的热量传散范围小,工件表面的热影响区也很小,有利于提高加工质量,适于加工热敏性强的材料。

加工适应性广
脉冲参数能在一个较大范围内调节,故可以在同一台机床上连续进行粗、中精及精微加工。精加工时的精度能控制其误差小于0.01 mm,表面粗糙度值为Ra 0.04 ~ 0.16 μm。

自动化程度高
直接利用电能进行加工,便于实现自动控制。

塑料模具型腔常用的电火花工艺方法有:

1. 单电极平动加工法
先采用脉冲电源的低损耗(- $)高加工速度规准进行粗加工,依次调整平动量,按照粗、中、精的顺序逐级改变电规准,实现型腔的侧向仿形加工。该方法的优点是只需一个电极,一次装夹定位,便可以达到较好的加工精度。平动运动可使电极损耗均匀,改善排屑条件,加工容易稳定。但是采用普通平动头难以获得高精度的型腔,特别是难以加工出内清角。

2. 多电极更换加工法
该方法采用多个电极,即粗、中、精加工用电极,依次更换来加工同一个型腔。这种方法的优点是仿形精度高,尤其适用于内清角、窄缝多的型腔加工。其缺点是需要用精密机床制造多个电极,更换电极时要有高的重复定位精度。

3. 分解电极加工法
根据型腔的几何形状和精度要求,把电极分解为主型腔电极和辅助电极。先用主型腔电极加工出主型腔,再用辅助电极加工出尖角、窄槽、异形孔等部位。该方法应用灵活,但各个电极的尺寸要求精确。
极间要保证定位精度。
电极材料一般选择紫铜或石墨。

对于单电极平动加工法时采用的电极尺寸可按如下方法确定:

式中：
- a 电极水平方向尺寸；
- A 型腔水平方向基本尺寸；
- Δs 电极单边缩小量；
- S_{1n} 最粗规准加工时的侧向间隙；
- R_{yn} 最粗规准加工时表面轮廓的最大高度；
- R_{yi} 最后精加工时表面轮廓的最大高度；
- K 与型腔尺寸注法有关的系数。当型腔尺寸注在加工边界上时 $K = 2$ ；当尺寸一端在加工边界，另一端在中心线上或非加工边界上时 $K = 1$ ；对于中心线位置尺寸及角度数值 $K = 0$。

上式中，号按以下原则选取：凹入型腔对应于电极的凸出部分，其尺寸应缩小，取 $+$ 号；反之取 $-$ 号。

垂直方向尺寸（图 10.7）

$$a = A \pm K \Delta s = A \pm K (S_{1n} + R_{yn} - R_{yi})$$
式中

- \(b \) —— 电极垂直方向的有效加工尺寸；
- \(B \) —— 型腔深度尺寸；
- \(\Delta f \) —— 电极单边缩小量；
- \(S_f \) —— 最后精规准加工时的端面间隙；
- \(\Delta L_{EF} \) —— 电极端面损耗的总和；
- \(K \) —— 与型腔尺寸注法有关的系数，值的取法与上式相同。

该公式中“\(+/− \)”号的取法也与上式相同。

电极设计尺寸公差一般取模具型腔公差的\((\)\()\)。精密型腔加工用的电极表面粗糙度值应小于\((/)\)。

电火花加工中电规准的选取。

1. 粗规准
 - 采用低损耗、宽脉冲、高峰值电流进行粗加工，脉冲宽度取\((-)\)。电流要根据工件而定，刚开始加工时，接触面积小，电流不宜过大，随着加工面积的增大逐步加大电流。一般电流密度值不超过\(2 3 4 5 \)。

2. 中规准
 - 在采用单电极加工时，从中规准起要利用平动来补偿粗规准与中规准放电间隙差。中规准为过渡阶段，其脉冲宽度为\((/)\)，电流也相应减少，使表面粗糙度值应小于\((/)\)。

3. 精规准
 - 脉冲宽度取\((/)\)，用小电流峰值加工。加工后表面粗糙度值为\((+\) \)。

电火花加工中的平动量分配。

为了提高加工速度和降低电极损耗，要求各挡电规准加工的电蚀凹坑底部刚能达到上挡加工的凹坑底部，达到既能修光，又使中、精加工的去除量为最小的目的。

粗加工时，电极不平动，这时的放电间隙为\(67\)，表面轮廓的最大凸起高度为\(87\)，如图所示。

最后精加工时，其最终表面轮廓的最大高度应符合加工要求，即其凹坑底部至少与粗加工时的一致。而这时的放电间隙较小，应依靠平动量来实现加工。总平动量为\(67\)。

中间各挡加工时平动量的分配主要取决于该挡所需要的修光量\(\)以及与上一档的加工间隙差，与电极损耗也有一定关系。合理的平动量

\[10.2 \]

\[Ra = 2.5 \text{ µm} \]

\[0.1 \sim 0.2 \text{ mm} \]

\[Ra = 0.32 \sim 2.5 \text{ µm} \]
分配可使尺寸和表面粗糙度同时达到预定的要求。一般中规准加工平动量占平动量的75%～80%，端面进给量为端面余量的40%～50%。

电火花线切割加工与电火花成形加工的原理是一样的，都是基于电极间脉冲放电时的电火花腐蚀原理，即极间液体介质被击穿后形成火花放电时，会产生大量的热量使电极表面的局部金属瞬间熔化和汽化，并把熔化和汽化了的金属去除掉，以实现加工目的。所不同的是，电火花线切割加工不需要制作复杂的成形电极，而是用不断移动的电极丝（铜丝或钼丝）作为工具，工件则按预定的轨迹进行运动而“切割”出所需的零件。图10.10为电火花线切割加工示意图。

电火花线切割加工特点如下：

1. 采用线电极加工工件
2. 适合加工复杂零件
3. 加工效率高
4. 线电极加工精度高
5. 加工零件形状受限制

电火花线切割机床的数控编程分为手工编程和计算机编程，手工编程有G、M、F、T等格式和/01格式。
式；计算机编程则可以将计算机中的零件图样直接转换成线切割程序。

我国数控电火花线切割机床采用五指令程序格式，即

式中——分隔符，用它来区分、隔离%、&和'等数码，后的数字如为*，则可以不写；%
&——直线的终点或圆弧起点的坐标值，编程时均取绝对值，+
'——计数长度，+
()——计数方向，分为(，和(，即可以按'方向或"方向计数，工作台在该方向每移动，计数累减*，当计数长度*时，这段程序即加工完毕；
——加工指令分为直线/和圆弧0两大类。直线按走向和终点所在象限分为/、/1、/#、/2四种，/后的数字表示该线段所在的象限。对于与坐标轴重合的直线段，正'轴为/，正"轴为/1，负'轴为/#，负"轴为/2；圆弧按第一步进入的象限及走向的顺、逆而分为30、301、30#、302、40、401、40#、402八种，30表示顺圆，40表示逆圆，如图所示。

图 直线和圆弧的加工指令

直线的编程

以直线的起点作为坐标原点，把直线的终点作为%、&，取绝对值，单位为+。

计数长度'按照计数方向(或(取该直线在'轴或"轴上的投影，单位也为+。计数方向应是此程序最后一步的轴向方向，对于直线，取%、&中绝对值较大的作为计数长度'和计数方向。加工指令按直线走向和终点所在象限确定。

圆弧的编程

以圆弧的圆心作为坐标原点，把圆弧的起点坐标值作为%、&，取绝对值，单位为+。

计数长度'按计数方向取'轴或"轴上的投影值，以+为单位。如果圆弧较长，跨越两个以上象限，则分别取计数方向'轴或"轴上各个象限投影值的绝对值的总和，作为该方向总的计数长度。计数方向应选取与该圆弧终点时走向较平行的方向，即取终点坐标中绝对值较小的轴向作为计数方向，这与直线相反。圆弧的加工指令按其第一步所进入的象限及切割的走向确定。

例

加工如图所示的轨迹，该图形由三条直线和一条圆弧组成，编写电火花线切割程序。
1. 加工直线
取坐标原点在AB点，与X轴正向重合，其程序为
BBB50000G\(_X\)L\(_1\)

2. 加工直线
取坐标原点在BC点，与Y轴正向重合，其程序为
BBB60000G\(_Y\)L\(_2\)

3. 取坐标原点在CD点，O点与X轴正向重合，X = 3000, Y = 4000。
B30000B40000B60000G\(_X\)NR\(_1\)

4. 取坐标原点在DA点，D点与X轴正向重合，X = 10000, Y = 60000。
B1B6B60000G\(_Y\)L\(_4\)

整个线切割程序见表10–8。

<table>
<thead>
<tr>
<th>程序</th>
<th>B</th>
<th>X</th>
<th>B</th>
<th>Y</th>
<th>B</th>
<th>J</th>
<th>G</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td></td>
<td>B</td>
<td></td>
<td>B</td>
<td>50000</td>
<td>G(_X)</td>
<td>L(_1)</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td>B</td>
<td></td>
<td>B</td>
<td>60000</td>
<td>G(_Y)</td>
<td>L(_1)</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>30000</td>
<td>B</td>
<td>40000</td>
<td>B</td>
<td>60000</td>
<td>G(_X)</td>
<td>NR(_1)</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>B</td>
<td>6</td>
<td>B</td>
<td>60000</td>
<td>G(_Y)</td>
<td>L(_4)</td>
</tr>
</tbody>
</table>

ISO程序

N\(\times\)x\(\times\)xG\(\times\)xX\(\times\)x\(\times\)x\(\times\)xY\(\times\)x\(\times\)x\(\times\)x\(\times\)xI\(\times\)x\(\times\)x\(\times\)x\(\times\)xJ\(\times\)x\(\times\)x

G\(\times\)y\(\times\)y\(\times\)y\(\times\)y\(\times\)y

X\(\times\)Y\(\times\)J\(\times\)I\(\times\)M\(\times\)

2-3 ISO

ISO程序

N\(\times\)x\(\times\)xG\(\times\)xX\(\times\)x\(\times\)x\(\times\)xY\(\times\)x\(\times\)x\(\times\)x\(\times\)xI\(\times\)x\(\times\)x\(\times\)x\(\times\)xJ\(\times\)x\(\times\)x

G\(\times\)y\(\times\)y\(\times\)y\(\times\)y\(\times\)y

X\(\times\)Y\(\times\)J\(\times\)I\(\times\)M\(\times\)

M01 M02 M00

ISO程序

1. G90

2. G91

I\(\times\)J\(\times\)M\(\times\)
时，直线以线起点为坐标原点，用 X_1, Y_1 表示线的终点对起点的坐标值；圆弧以圆弧的起点为坐标原点，用 X_2, Y_2 表示圆弧终点对起点的坐标值，用 X_3, Y_3 表示圆心对圆弧起点的坐标值，如图所示。

圆弧的绝对坐标输入
圆弧的相对坐标输入

例：要加工如图所示的型孔，线切割穿丝孔中心的坐标位置为 (X_0, Y_0)，按顺时针方向切割，用 X_1, Y_1 代码编写线切割程序。

以绝对坐标方式 $(01')$ 编程，如图所示。

给定起始点的绝对坐标
直线终点的绝对坐标
直线终点的绝对坐标
直线终点的绝对坐标
直线终点的绝对坐标
给定圆心的绝对坐标
直线终点的绝对坐标
直线终点的绝对坐标

塑料注射模具零件常用加工方法

<table>
<thead>
<tr>
<th>编号</th>
<th>代码</th>
<th>X坐标</th>
<th>Y坐标</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>G92</td>
<td>X5000</td>
<td>Y20000</td>
</tr>
<tr>
<td>N2</td>
<td>G90</td>
<td>X5000</td>
<td>Y12500</td>
</tr>
<tr>
<td>N3</td>
<td></td>
<td>X-5000</td>
<td>Y12500</td>
</tr>
<tr>
<td>N4</td>
<td></td>
<td>X-5000</td>
<td>Y32500</td>
</tr>
<tr>
<td>N5</td>
<td></td>
<td>X5000</td>
<td>Y32500</td>
</tr>
<tr>
<td>N6</td>
<td></td>
<td>X5000</td>
<td>Y27500</td>
</tr>
<tr>
<td>N7</td>
<td>G02</td>
<td>X5000</td>
<td>Y12500</td>
</tr>
<tr>
<td>N8</td>
<td>G01</td>
<td>X5000</td>
<td>Y2000</td>
</tr>
</tbody>
</table>
以相对坐标方式编程，如图所示。

从上面例子可以看出，采用相对坐标方式输入程序的数据可较简短，但必须先算出各点的相对坐标值。

在电火花线切割加工中，机床所控制的电极丝运动轨迹为电极丝中心的运动轨迹，为获得所要求的零件加工尺寸，就要考虑电极丝中心运动轨迹与零件轮廓线之间的法向尺寸差，即间隙补偿量。间隙补偿量根据加工零件的不同而有所区别，如图所示，电极丝中心轨迹用双点画线表示，加工凸模时，电极丝中心轨迹应在所加工图形的外面；加工凹模时，电极丝中心轨迹应在所加工图形的里面。工件图形与电极丝中心轨迹间的距离即为间隙补偿量，在实际生产编程中应加以考虑。

电火花线切割机床分为低速走丝电火花线切割机床（单向走丝）和高速走丝电火花线切割机床。低速走丝电火花线切割机床其电极丝移动速度在以下单向走丝，电极丝采用铜丝，一次性使用，其加工精度高，表面质量好，但成本较高。高速走丝电火花线切割机床的电极丝移动速度在，电极丝采用钼丝，往复使用，其加工速度快，成本低，但质量稍差。
在电火花线切割机床加工过程中，要求电极丝加工性能好、抗拉强度高、经济性好。当工件厚度小，形状复杂时，采用直径较细的丝；对于低速走丝电火花线切割机床采用去离子水为工作液，而高速走丝电火花线切割机床采用乳化液为工作液。

切割凹模或孔类零件时，为保证工件的完整性，零件上必须有穿丝孔。一般穿丝孔位于形孔的中心，直径为φ1～φ3 mm。

对于要求精度高的电火花线切割加工，可以采用多次切割的方法，其原理与电火花加工时的规准转换类似。预先留下加工量先进行一次加工，然后转换电规准为精加工条件，使用同一程序，减少间隙补偿量进行再次加工，总的加工次数甚至可达八次。多次切割的方法使用低速走丝电火花线切割机床完成。

（电解加工）
电解加工是利用金属在电解液中的“电化学阳极溶解”来加工工件的。图10-1为电解加工示意图。加工时，工件接直流电源的正极，工具接电源负极，工具以恒速向工件缓慢进给，具有一定压力的电解液从二极之间流过，并把阳极工件溶解下来的电解产物以高速冲走。

图10-1 电解加工示意图
1—进给轴；2—工具负极；3—工件正极；4—电解液输送管道；5—调压阀；6—电解液泵；7—过滤器；8—电解液；9—过滤网；10—电解液回收管道；11—直流电源

电解加工成形原理如图10-2所示。图中的细实线表示通过负极（工具）与正极（工件）间的电流，实线的疏密程度表示电流密度的大小。在加工刚开始时，负极与正极距离较近的地方电流密度较大，电解液的流速也高，因而正极的溶解速度也快；而相对远一点的地方则电流密度相对较小，正极溶解速度也慢，如图10-2所示。随着工具不断地向工件进给和电解加工不断进行，会使各处极间距离趋于一致，如图10-2所示，从而使工具上的型面复制在正极工件上，加工出所需要的零件。

电解加工与其他加工方法相比较，具有如下优点：
1) 加工适应性广
电解加工与被加工材料的硬度、强度、韧性等无关，故可加工任何金属材料。常用于加工高温合金、钛合金、不锈钢、淬火钢和硬质合金等难切削材料。
2) 生产效率高
能以简单的直线进给运动，一次加工出复杂的型腔、型孔或外形表面。其进给速度可达0.49～1.96 MPa，因此，生产效率高，约为电火花加工的5～50 m/s。
电解加工原理
无形影响。表面粗糙度值可达
平均加工精度
电解微细加工钢材的精度为。
工具损耗小
电解加工时,工具负极材料本身不参与电极反应,同时工具材料又是抗腐蚀良好的不锈钢或黄铜等,所
以除产生火花短路等特殊情况外,工具负极基本上没有损耗,可长期使用。
电解加工也有缺点和局限性,如电解加工精度难以严格控制,工件上难以加工出棱角;电
解加工设备投资大,电解液对设备的腐蚀严重;电解加工后的电解产物污染环境,处理较困
难等。
电铸成形加工
电铸成形是利用电化学过程中的阴极沉积现象来进行成形加工的。电加工时用导电的原模
做阴极,用电铸的金属做阳极,金属盐溶液做电铸溶液,阳极金属材料与金属盐溶液中的金属
离子种类相同。在直流电源的作用下,电铸溶液中的金属离子在阴极还原成金属,沉积于原模
表面;而阳极金属则源源不断地补充溶液中的离子,以保持离子浓度恒定。当阴极原模电铸层
逐渐加厚达到要求的厚度时,与原模分离,即获得与原模型面相反的电铸件。图 为电铸
原理示意图。
电铸加工的主要特点:
适合加工复杂模具型腔
采用电铸加工可以将加工困难的内表面
转化为原模的外表面加工,而且原模可采用
石蜡、树脂等材料,这就大大降低了加工难
度,特别适合于加工具有精细形状的塑料模
具型腔。其加工精度高,表面粗糙度值可达
以下。
电铸加工重复精度高
电铸加工有很高的重复精度,可以用一
只标准的原模制出很多形状一致的型腔。
电铸加工适应性广
电铸加工可以制造多层结构的制件,能
将多种金属,非金属拼铸成一个整体。
电铸加工设备简单
电铸加工不需要特殊设备,操作简单。但是,电铸加工也存在着生产周期较长,尖角或凹槽部分铸层不均匀,铸层存在一定的内
应力,不能承受冲击载荷等缺点。因此,电铸成形加工多用于较小模具的型腔制造。
型腔表面研磨
型腔表面经机械、电加工、热处理等工序后,都必须进行研磨、抛光加工。目前常用的研

抛方法有手工研抛、机械研抛、电解抛光、超声波抛光等。

图2-1手持式研抛工具

研磨是由游离的磨粒通过研具对工件进行微量切削的过程，在这一加工过程中工件表面发生了复杂的物理和化学变化。

研磨的特点是尺寸精度高，磨料采用极细的微粒，在低速、低压下磨除一层极薄的金属，使模具工作表面获得高精度，其尺寸精度可达Ra0.01μm，表面粗糙度值可达Rz。模具工作表面性能得到改善后使表面摩擦系数减小，耐磨性提高，同时研磨有利于提高工作表面的疲劳强度。

常用的研磨方法有湿研、干研、半干研。湿研是在研具与工件表面间加入研磨剂进行研磨的方法。该方法研磨精度较低，多用于粗研和半精研。干研是在一定压力下将磨粒均匀地压嵌在研具的表面中而进行的研磨。该方法研磨精度高，但研磨效率低，一般用于精研加工。半干研采用糊状的研磨膏进行的研磨，可用于粗研和精研。

研磨的操作方法可分为手工研磨和机械研磨。机械研磨可采用手持式研抛工具、自动研抛机等，图2-1所示为手持式研抛工具。

抛光是指对零件表面进行最终的光饰加工。抛光的目的是去除模具工作表面上的加工痕迹，改善表面粗糙度，获得高光亮度的表面。经抛光后的表面粗糙度值可达Rz。抛光可采用砂纸抛光，还可以采用抛光剂。抛光剂是由粉粒状的抛光用软磨料与油及其他适当成分介质混合而成，分为固体抛光剂和液体抛光剂两大类。固体抛光剂又可分为油脂性和非油脂性两类，液体抛光剂又分为乳浊状型、液态油脂型及液态非油脂型。实际生产中多采用固体抛光剂。

抛光也可以采用手工抛光和机械抛光，其机械工具与研磨相同。

照相腐蚀加工常用于塑料模具成形表面上的复杂图形、文字或花纹的加工。照相腐蚀加工塑料注射模具零件常用加工方法
是把所需的文字、图形摄影到照相底片上,然后经光化学反应,把文字图形复制到涂有感光胶的金属表面,经坚膜固化处理,使感光胶具有一定的抗蚀能力,最后采用化学腐蚀去掉未被感光部分的金属,即可获得所需文字、图形的模具型腔或电极表面。

照相腐蚀加工的工艺过程如下:

1. 原图和照相

原图是将所需的图形按一定比例放大描绘在纸上,形成黑白分明的文字图案。为确保原图质量,一般都需放大几倍。然后通过照相,将原图按需要的尺寸大小缩小在照相底片上。

2. 涂覆感光胶

对需要加工的模具成形表面进行清理,除去油污、氧化皮。涂覆感光胶(如聚乙烯醇、骨胶、明胶等),并使其干燥。

3. 曝光、显影和坚膜

曝光是将原图照相底片用真空方法紧密贴合在已涂覆感光胶的模具成形表面,然后用紫外光照射,使模具成形表面上的感光胶膜按图像感光。照相底片上的不透光部分,由于挡住了光线照射,胶膜未参与光化学反应,仍是水溶性的。照相底片上的透光部分由于受到光的照射而发生了光化学反应,胶膜变成不溶于水的络合物。最后经过显影,把未感光的胶膜用水冲洗掉,胶膜便呈现出所需要的图像。为了提高显影胶膜的抗蚀性,可将其放入坚膜液中进行处理。

4. 固化

经感光坚膜后的胶膜,抗蚀能力仍不强,必须进一步固化。固化的方法是烘焙,烘焙的温度及时间随金属材料而异。

5. 腐蚀

经固化处理后放入腐蚀液中进行腐蚀,即可获得所需图像。腐蚀成形后经清洗去胶,然后擦干,即可在模具成形表面得到所需要的文字,图形。

采用照相腐蚀加工的文字、图形,精度高、仿真性强,腐蚀深度均匀,保证了模具的质量,使生产出的塑料制品具有良好的外观效果。

10. 2. 2 塑料注射模具典型零件加工

塑料注射模具的主要零件多采用结构钢制造,通常只需调质处理,其硬度一般不高,因此其加工工艺性较好。

现以图所示塑料盒体的注射模具为例介绍塑料注射模具典型零件加工。塑料盒体的注射模具为单型腔注射模,采用直浇口进料,推杆推出制品。

1. 型腔加工

型腔加工在模具的定模板上,如图所示。其加工工艺过程为

2. 画线

以定模板基准角为基准,画各加工线位置。

3. 粗铣

粗铣出型腔形状,各加工面留余量。

4. 精铣

精铣型腔,达到制品要求的外形尺寸。

5. 钻、铰孔

钻、铰出浇口套安装孔。

6. 抛光

将型腔表面抛光,以满足制品表面质量要求。
图 10.22 塑料盒体注射模
1—紧固螺钉; 2—定模座板; 3—定位圈; 4—型芯; 5—型芯固定板; 6—型芯固定板; 7—紧固螺钉; 8—支承板; 9—推杆; 10—垫块; 11—动模座板; 12—推板; 13—推杆固定板; 14—密封圈; 15—隔水板; 16—导柱; 17—导套; 18—钻孔

图 10.23 塑料盒体注射模
1—定模板; 2—型芯固定板; 3—型芯固定板; 4—紧固螺钉; 5—推杆; 6—隔水板; 7—导柱; 8—导套; 9—型芯; 10—型芯固定板; 11—紧固螺钉; 12—型芯固定板; 13—型芯固定板; 14—紧固螺钉; 15—型芯固定板; 16—型芯固定板; 17—型芯固定板; 18—型芯固定板

图 10.24 塑料盒体注射模
1—定模板; 2—型芯固定板; 3—型芯固定板; 4—紧固螺钉; 5—推杆; 6—隔水板; 7—导柱; 8—导套; 9—型芯; 10—型芯固定板; 11—紧固螺钉; 12—型芯固定板; 13—型芯固定板; 14—紧固螺钉; 15—型芯固定板; 16—型芯固定板; 17—型芯固定板; 18—型芯固定板

图 10.25 塑料盒体注射模
1—定模板; 2—型芯固定板; 3—型芯固定板; 4—紧固螺钉; 5—推杆; 6—隔水板; 7—导柱; 8—导套; 9—型芯; 10—型芯固定板; 11—紧固螺钉; 12—型芯固定板; 13—型芯固定板; 14—紧固螺钉; 15—型芯固定板; 16—型芯固定板; 17—型芯固定板; 18—型芯固定板

型芯加工
型芯采用镶的方法安装于型芯固定板上,型芯的结构如图所示,其加工工艺过程为

1. 下料:根据型芯的外形尺寸下料。
2. 粗加工:采用刨床或铣床粗加工为六面体。
3. 磨平面:将六面体磨平。
4. 画线:在六面体上画出型芯的轮廓线。
5. 精铣:精铣出型芯的外形。
6. 钻孔:加工出推杆孔。
7. 钻孔:加工出型芯上的冷却水孔。
8. 抛光:将成形表面抛光。
9. 研配:钳工研配,将型芯装入型芯固定板。

型芯固定板加工
型芯固定板即动模板,它的作用是安装、固定型芯,如图所示。其加工工艺过程为

1. 画线:以与定模板相同的基准角为基准,画出各加工线的位置。
2. 粗铣:粗铣出安装固定槽,各面留加工余量。
图型芯

型芯固定板

第10章 塑料注射模具制造与实例

10.24

基准角

10.25
10.3 塑料注射模具装配

10.3.1 塑料注射模具装配

塑料注射模具通常都是由一些基本部件组成的，如型腔、型芯部分，模架、导向部分，推出部分等。这些基本部件中有一大部分可采用标准件，这些标准件可以由专业制造厂采用专用机床进行生产，其生产的标准件质量高，互换性好，而且生产期短、成本低。因此，在塑料注射模具制造中使用标准件，可以大大缩短模具制造周期，提高模具质量。

标准模架

模架是模具组成的基本部件，图所示为最基本的模架组成结构。

在标准模架中，定模座板用于在注射机上固定定模部分，其宽度尺寸比定模板宽，以便于安装固定。同样动模座板也宽于动模板。定模板和动模板用来加工和安装型腔、型芯部分组件，动模板与定模板之间由导柱和导套配合确定相对位置，一般导套安装于定模板，导柱安装于动模板。导套与导柱之间的配合精度保证了动模板与定模板闭合时的位置精度，标准模架的一般采用四对导柱、导套，对称布置，为防止动模板与定模板位置装反，其中一对导柱、导套的位置尺寸要偏移，如图所示。

在图中，推杆固定板与推板由螺钉固定在一起，组成推出部分，推出部位与定模板之间的相对位置由四根复位杆保证，推出部分的推出行程由垫块的高度决定，如图所示。螺钉用来固定定模座板与定模板，螺钉用来固定动模板与动模板、垫块。

基本模架的外形尺寸为一个系列标准，在每一外形尺寸的定模板与动模板中又有不同的厚度尺寸，可以根据需要首先确定模架的外形尺寸，然后再选择定模板与动模板的厚度尺寸，以满足不同模具的需要。

在基本模架的基础上稍加改动，即可以得到不同形式的模架。如图所示，在动模板下面增加一块支承板，这样可以方便在动模板上安装型芯，还可以提高动模板的强度、刚性。
如果在动模板的上面增加推件板，如图所示，则注射模可以采用推件板推出塑件，推件板用螺钉与复位杆固定在一起，推件板上装有导套，使推件板可以在导柱上滑动。

图导柱、导套位置
推出行程
动模板；复位杆；垫块；推杆固定板；推板；动模座板

图带支承板的模架
图带推件板的模架

基本模架为单分型面注射模（二板式注射模）模架，但在基本模架的定模板与定模座之间增加一块浇注系统凝料脱出板，即可成为双分型面注射模（三板式注射模）模架，如图所示。双分型面注射模模架定模板与定模座板之间没有螺钉连接，而是增加了导柱，使浇注系统凝料脱出板和定模板（中间板）能够在其上滑动，完成二次分型工作。

导向系统标准件
导向系统是由为模具的定模部分与动模部分开合时起导向作用的零件组成，常见的标准件

第章塑料注射模具制造与实例
双分型面注射模模架——浇注系统凝料脱出板；
导套；
导柱。

常见的导柱形式如图所示, 图为带头导柱; 带头导柱为带有轴向定位台阶, 固定段与导向段具有同一公称尺寸直径、不同分差带的导柱; 图为带肩导柱, 带肩导柱为带有轴向定位台阶, 固定段直径公称尺寸大于导向段的导柱。

导套与导柱配合保证导向精度, 一般配合精度为+ , - , 其结构如图所示。图为直导套, 图为带头导套。

推出系统标准件——塑料制件从模具型腔中推出, 是靠推出系统完成的。推出系统常见的标准件有:
推杆——推杆是使用最多的标准件, 其结构形式如图所示。图为圆柱头推杆, 其截面为圆形。图为带肩推杆, 其截面也为圆形, 但直径有变化, 常用于& 11 以下的推杆, 以提高推杆的强度。图为扁推杆, 扁推杆适合于薄壁部位的顶出。
推管——推管如图所示, 推管的截面为圆环形, 推管用于带有型芯的复杂部位的塑料制件推出, 图为采用推管推出的形式。
推杆和推管必须保证一定的长径比, 以防止其在推出时发生弯曲, 所以选用时应取较大的直径。推杆和推管有标准直径系列和标准长度系列, 可根据实际需要选择。
推件板——推件板也是推出系统的标准件, 但它与模架配套加工, 如图所示。

浇口套——浇口套又称为主流道衬套, 如图所示。主流道上端与注射机喷嘴紧密对接, 因此其尺寸应按注射机喷嘴尺寸选择。浇口套的长度按模具模板厚度尺寸选取。
拉料杆——拉料杆的作用是拉出浇注系统凝料, 其结构有3 形、球形、锥形等。拉料杆的规格尺寸与推杆相同, 一般采用直通式圆截面推杆制作。
热流道喷嘴——热流道喷嘴是热流道系统的关键组件, 选择标准的热流道喷嘴使模具制造方便、快捷、可靠。常见的热流道喷嘴如图所示。

其他标准件——定位环——定位环用于模具在注射机上的定位。定位环的直径根据注射机的型号确定。在标准模架上。
图 10.32 导柱与导套
开设有与定位环直径相匹配的凹槽，用于安装定位环，如图所示。

支撑柱是用来对模具的垫板进行支撑，以提高垫板的刚度，如图所示。支撑柱的截面为圆形，其高度应与模具的垫块相同。

模具上用到标准件还有很多，如冷却水嘴、加热元件等等，可参考有关手册选取。
10.36

10.37

10.38

10.39

图26x465至419x609
图45x260至188x440
图241x260至417x352
图281x69至435x235

塑料注射模具部件装配

模具的装配是指按照模具的技术要求将零件组合成部件,最后装配成模具的过程。模具装配过程包括试装、研配、调整、试模等工作。通过装配过程,最后达到生产出合格制品的要求。

模具装配必须满足装配精度要求,包括:

1. 位置精度
 - 各零、部件的相互位置精度,如尺寸精度、同轴度、平行度、垂直度等。

2. 配合精度
 - 各零、部件配合表面间的配合精度,如一定的配合间隙、配合的接触面积等。

3. 运动精度
 -

第10章
塑料注射模具制造与实例

1
2
3
4
5
6
各运动部件的相对运动精度,如直线运动精度、回转运动精度、传动精度等。

模具装配精度的高低,直接影响产品质量,也影响着模具的使用寿命。零件的加工精度是保证模具装配精度的基础,但过高的零件加工精度有时难以达到,这就必须在装配时采取一定的工艺措施来达到装配精度的要求,以满足实际生产的需要。

图10.40 压入法

装配型腔
——型腔；
——止转销钉

塑料注射模的型腔多采用镶嵌或拼合的形式,型腔与模板的装配方式有:

(1) 压入法装配
将型腔直接压入模板型孔中的装配方法。压入前,首先要调整好装配位置,并在装配面涂油润滑。当开始压入模板一部分后,要测量,调整装配的垂直度,确定满足垂直度要求后,再将型腔全部压入模板。在压入时,最好采用液压机或手动压力机进行,并防止在压入时转动,如图10.40所示。

(2) 镶嵌法装配
在一块模板上需镶入两个或两个以上的型腔或型芯,而且要求动、定模之间要有较高的相对位置精度时可采用此种方法。图10.40所示为一组合型腔的装配,此装配要求保证小型芯与定模镶块上孔的同心度,这就需要以合理的装配过程保证。其装配工艺如下:

(3) 型腔拼块法装配
对于多块拼合而成的型腔进行装配时应注意:

(1) 在拼合装配时,所有拼合面要进行研配以保证配合紧密,要防止配合面产生缝隙,以免在注射生产时产生飞边。
(2) 模板上的型腔固定孔,一般要留有修正余量,按拼块拼合后的尺寸进行修正,使型腔拼块的镶入应有足够的过盈量。
(3) 拼块的某些部位必须在装配后进行加工,如图10.40所示拼块上的矩形型腔。

型芯装配
型芯与固定板的装配方式有多种,常用的有:

(1) 型芯与通孔或固定板装配
型芯与通孔或固定板孔之间一般采用过渡配合,压入装配。在装配前必须检查其过盈量、配合部分的表面粗糙度以及压入端的引导斜度等,在符合要求后方可压入装配。
图10.42 所示为型芯与固定板的装配。为便于将型芯压入固定板并防止损伤孔壁，应将型芯端部四周修出斜度。若型芯上不允许修出斜度，则可将固定板孔口修出导向斜度，如图10.43所示。此时斜度可取10° ～ 20°，高度为 5 mm 以内。

为了避免型芯与固定板配合的尖角部分发生干涉，可将型芯角部修成R0.3 mm 左右的圆角，如图10.44所示。当不允许型芯修成圆角时，则应将固定板孔的角部用锯条修出清角、圆角或窄槽，如图10.45所示。

型芯与通孔或固定板压入装配前应涂润滑油，先将导入部分放入通孔或固定板中，测量并校正其垂直度后方可缓慢而平稳地压入。在全部压入过程中应随时测量与校正型芯的垂直度，以保证装配质量。型芯装入后，还应将型芯尾部同固定板装配平面一起磨平。

型芯埋入式装配结构如图10.46所示。固定板沉孔与型芯尾部为过渡配合。固定板沉孔一般均由立铣刀加工，由于沉孔具有一定形状，因此往往与型芯埋入部分尺寸有差异，所以在装配前应检查两者尺寸，如有偏差应进行修正。一般多采用修正型芯的方法，但应注意，修正不能影响装配后型芯与型腔的配合。
型芯埋入式装配

固定板；
螺钉

对于面积大而高度低的型芯，常采用螺钉、销钉直接与固定板连接的装配方法。如图所示，其装配过程为

1. 在淬硬的型芯上压入实心销钉套；
2. 定位块和用平口卡钳卡紧在固定板上，以确定型芯的位置；
3. 将型芯的螺钉孔位置复印到固定板上，然后钻出螺钉孔；
4. 初步用螺钉将型芯紧固，动、定模闭合，检查型芯位置是否正确，如不正确则加以调整；
5. 调整好型芯后，在固定板的反面画出销钉孔位置，与型芯一起钻、铰销钉孔，然后装入销钉。

型芯螺钉固定式装配

—型芯；
—固定板；
—平口卡钳；
—定位块；
—销钉套

推杆装配

推杆的作用是推出制件。在推件时，推杆应工作可靠、动作灵活，尽量避免磨损，因此对推杆的装配有如下要求：

1. 推杆与型腔推杆孔的配合间隙要合理，即要保证推杆动作灵活，又要防止间隙太大而渗料，一般采用H8/f8配合。
2. 推杆装配后在推杆孔中应往复平稳、无卡滞现象。
3. 推杆和复位杆端面应分别与型腔表面和分型面齐平或高出分型面。
4. 推杆固定板的加工与装配

为了使推杆在推杆孔中往复平稳，推杆在推杆固定板孔中应能有所浮动，推杆与推杆固定孔的装配部分每边留0.05～0.10 mm的间隙。所以，推杆固定孔的位置应采用通过型腔上的推杆孔复钻得到，如图所示，为其复钻过程，其方法是：

1. 先将型腔镶块上的推杆孔复钻到支承板上，如图所示。复钻时用动模板和支承板上的原有螺钉与销钉作紧固和定位。
2. 通过支承板上的孔复钻到推杆固定板上，如图所示。支承板与推杆固定板之间用复位杆定位，然后用平口卡钳卡紧，再进行复钻。

推杆的装配方法

推杆的装配过程如下：

1. 推杆孔入口处倒小圆角或斜度。推杆顶端也可倒角，但装配后要去掉。
2. 检查和修整推杆后端台肩厚度，使装配后台肩厚度比推杆固定板沉孔的深度小。
3. 装配时应将复位杆、推杆依次装入，然后装上推板，并将推板与推杆固定板用螺钉紧

推杆装配

H8/f8
0.05～0.10 mm
0.5 mm
10.48
10.48a
10.48b
0.05 mm
3
2
1
图！

1—型腔镶块；
2—型腔固定板；
3—支承板；
4—推杆固定板；
5—复位杆；
6—平口卡钳

反复推拉推板，使推杆往复运动，检查动作是否灵活，是否有卡紧现象，如有则进行必要的调整。

修磨推杆和复位杆的顶端面。在修磨时，先将推板复位到极限位置，然后分别测量出推杆和复位杆高出型面与分型面的尺寸，确定磨修量。修磨后，推杆端面可高出型面0.05～0.10 mm，复位杆应与分型面平齐，或低0.02～0.05 mm。

滑块抽芯机构装配

滑块的主要功能是带动活动型芯做横向抽出与复位运动。要求其位置正确、滑动灵活可靠。其装配过程为

1）确定滑块槽的位置
如图所示，一般情况下滑块的安装是以动模型腔镶块的型面为基准。因此，要确定滑块的位置，必须先将定模型芯安装在定模板中，然后使其进入动模型腔镶块中，调整、修磨无误后，确定滑块型芯的位置。

精密加工滑块槽及铣形槽
以分型面为基准，根据滑块实际尺寸配磨或精铣滑块槽底面。再按照滑块台肩的实际尺寸，精铣动模板上的形槽，最后由钳工修正，使滑块与导滑槽正确配合，保证滑块运动的平稳。

测定型孔位置及配制型芯固定孔
固定在滑块上的型芯往往要求穿过型腔镶块上的孔进入型腔，并要求型芯与孔配合正确，滑动灵活。为此，要确定滑块上型芯固定孔的正确位置，然后加工出型芯固定孔。

安装滑块型芯
将滑块型芯装入滑块上的型芯固定孔，并用销钉定位。研配滑块型芯的端部，使其与定模型芯贴合，同时滑块的前端面应与动模型腔镶块贴紧。
滑块型芯安装后即可确定楔紧块的位置。在楔紧块装配时，首先要保证楔紧块斜面与滑块斜面必须均匀接触。其次，模具闭合后，保证楔紧块与滑块之间具有锁紧力，方法是在装配过程中使楔紧块与滑块的斜面接触后，分模面之间留有0.2 mm的间隙。当间隙被压合后即产生锁紧力。最后通过楔紧块对定模板复钻销钉孔，装入销钉紧固。

斜导柱装配

斜导柱孔的加工是在滑块、动模板和定模板组合在一起的情况下进行的。此时楔紧块对滑块做了锁紧，分型面之间留有0.2 mm的间隙用金属片垫实。斜导柱孔加工后装入斜导柱。滑块上的斜导柱孔要与斜导柱留有0.5 ~ 1 mm的间隙。

安装滑块复位、定位装置

滑块复位、定位装置的安装与位置调整一般在滑块装配基本完成后进行。图10.50为常用的复位、定位装置。图10.50a为采用定位板作定位；图10.50b为采用滚珠定位。

调整与试模

滑块抽芯机构装配结束后，必须经试模、修整，检查其动作的灵活程度及安装位置的正确性。

塑料注射模具总装配

塑料注射模具的质量，取决于模具零件的加工制造质量和装配质量，因此提高装配质量是非常重要的，在模具装配时应注意如下方面：

1. 成形零件及浇注系统
 1. 成形零件的形状、尺寸必须符合图样的要求
 2. 成形零件及浇注系统的表面应平整、光洁
 3. 相互接触承压零件应有适当的间隙或合理的承压面积
 4. 型腔的分型面

10.3.3 塑料注射模具装配
推出系统零件位置要求
推出系统在模具打开时能顺利推出制件，并方便取出制件和废料。闭模时能准确回复到初始位置。

推出系统零件动作灵活
各推出零件，在装配后要动作平稳、灵活，不得有卡住及发涩现象。

滑块及活动零件保证装配精度
滑块及活动零件装配后要间隙适当，起止位置要安装正确，不准有卡住、歪斜现象。

保证运动精度
滑块及活动零件运动时要保证运动平稳、可靠、动作灵活、协调、准确。

保证装配可靠
各紧固螺钉、销钉要拧紧，保证安全可靠，不松动。

导向机构保证装配垂直度
导柱、导套在安装后要垂直于模座，不得歪斜。

保证配合精度
导柱、导套的导向精度要满足设计图样的要求。

加热与冷却系统
冷却水路要通畅，不漏水，阀门控制可靠。

电加热系统要绝缘良好，无漏电现象并且安全可靠，能达到模具温度的要求。

模具外观
为搬运、安装方便，模具上应设有起重吊孔或吊环。

模具装配后其闭合高度、安装尺寸等要符合设计图样的要求。

模具闭合后，分型面，承压面之间要闭合严密。模具外露部分的棱边要倒角。

模具装配后动、定模座板安装面对分型面平行度在范围内不大于。

装配后的模具应打印标记、编号及合模标记。装配后的模具，应在生产条件下进行试模，直到生产出满足质量要求的产品。

塑料注射模具设计与制造实例
塑料注射模具设计与制造实例通过一个典型的塑料制品，介绍了从塑件成形工艺分析到确定模具的主要结构，最后绘制出模具图的塑料注射模具设计全过程。
产品材料: 抗冲
产品数量: 较大批量生产
塑件尺寸: 如图所示
塑件质量: 抗冲
塑件颜色: 红色
塑件要求: 塑件外侧表面光滑, 下端外沿不允许有浇口痕迹。塑件允许最大脱模斜度

塑件材料特性

塑料(丙烯腈+丁二烯+苯乙烯共聚物)是在聚苯乙烯分子中导入了丙烯腈、丁二烯等异种单体后成为的改性共聚物, 也可称改性聚苯乙烯, 具有比聚苯乙烯更好的使用和工艺性能。

是一种常用的具有良好的综合力学性能的工程塑料。

塑料为无定型料, 一般不透明。

无毒、无味, 成形塑件的表面有较好的光泽。

具有良好的机械强度, 尤其是抗冲击强度高。

还具有一定的耐磨性、耐寒性、耐油性、耐水性、化学稳定性和电性能。

的缺点是耐热性不高, 并且耐气候性较差, 在紫外线作用下易变硬发脆。

塑件材料成形性能

使用塑料注射成形塑料制品时, 由于其熔体黏度较高, 所需的注射成形压力较高, 因此塑件对型芯的包紧力较大, 故塑件应采用较大的脱模斜度。另外熔体黏度较高, 使制品易产生熔接痕, 所以模具设计时应注意尽量减少浇注系统对料流的阻力。

易吸水, 成形加工前应进行干燥处理。在正常的成形条件下, 制品的尺寸稳定性较好。

塑件的成形工艺参数确定

查有关手册得到(抗冲)塑料的成形工艺参数:

密度: 1.01 ~ 1.04 g/cm³

收缩率: 0.3% ~ 0.8%

预热温度: 80 ℃ ~ 85 ℃, 预热时间: 2 ~ 3 h

料筒温度: 后段 150 ℃ ~ 170 ℃, 中段 165 ℃ ~ 180 ℃, 前段 180 ℃ ~ 200 ℃

喷嘴温度: 170 ℃ ~ 180 ℃
10.4.2 模具温度

<table>
<thead>
<tr>
<th>模具温度</th>
<th>注射压力</th>
<th>成形时间</th>
<th>保压时间</th>
<th>冷却时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °C ~ 80 °C</td>
<td>60 ~ 100 MPa</td>
<td>20 ~ 90 s</td>
<td>0 ~ 5 s</td>
<td>20 ~ 150 s</td>
</tr>
</tbody>
</table>

模具的基本结构及模架选择

1. **模具的基本结构**
 - **(1) 确定成形方法**
 塑件采用注射成形法生产。为保证塑件表面质量，使用点浇口成形，因此模具应为双分型面注射模（三板式注射模）。
 - **(2) 型腔布置**
 塑件形状较简单，质量较小，生产批量较大。所以应使用多型腔注射模具。考虑到塑件的侧面有φ0.0的圆孔，需侧向抽芯，所以模具采用一模二腔、平衡布置。这样模具尺寸较小，制造加工方便，生产效率高，塑件成本较低。其布置如图所示。

2. **确定分型面**
 - 塑件分型面的选择应保证塑件的质量要求，本实例中塑件的分型面有多种选择，如图所示。图的分型面选择在轴线上，这种选择会使塑件表面留下分型面痕迹，影响塑件表面质量。同时这种分型面也使侧向抽芯困难；图的分型面选择在下端面，这样的选择使塑件的外表面可以在整体凹模型腔内成形，塑件大部分外表面光滑，仅在侧向抽芯处留有分型面痕迹。同时侧向抽芯容易，而且塑件脱模方便。因此塑件选择如图所示的分型面。

3. **点浇口浇注系统**
 - 塑件采用点浇口成形，其浇注系统如图所示。点浇口直径为φ0.8 mm，点浇口长度为214 mm，头部球为0.0 mm，锥角为4°。分流道采用半圆截面流道，其半径为1 % 1/ " 00。主流道为圆锥形，上部直径与注射机喷嘴相配合，下部直径1 % 1/ " 00。

4. **确定推出方式**
 - 由于塑件形状为圆壳形而且壁厚较薄，使用推杆推出容易在塑件上留下推出痕迹，不宜采用。所以选择推件板推出机构完成塑件的推出，这种方法结构简单。
推出力均匀，塑件在推出时变形小，推出可靠。

侧向抽芯机构

塑件的侧面有圆孔，因此模具应有侧向抽芯机构。抽出距离较短，抽出力较小，所以采用斜导柱、滑块抽芯机构。斜导柱装在定模板上，滑块装在推件板上。

模具的结构形式

模具结构为双分型面注射模，如图所示。采用拉杆和限位螺钉，控制分型面的打开距离，其开距应大于，方便取出浇口。分型面的打开距离，其开距应大于，用于取出制件。模具分型面的打开顺序，由安装在模具外侧的弹簧滚柱式机构控制。
模具的结构、尺寸的设计计算

模具结构设计计算

1. 型腔结构
 如图所示，型腔由定模板和定模镶件和滑块三部分组成。定模板和滑块构成塑件的侧壁，定模镶件成形塑件的顶部，而且点浇口开在定模镶件上，这样使加工方便，有利于型腔的抛光。定模镶件可以更换，提高了模具的使用寿命。

2. 型芯结构
 如图所示，型芯由动模板上的孔固定。型芯于推件板采用锥面配合，以保证配合紧密，防止塑件产生飞边。另外，锥面配合可以减少推件板在推件运动时与型芯之间的磨损。型芯中心开有冷却水孔，用来强制冷却型芯。

3. 斜导柱、滑块结构
 如图所示。

4. 模具的导向结构
 如图所示，为了保证模具的闭合精度，模具的定模部分与动模部分之间采用导柱和导套导向定位。推件板上装有导套，推出制件时，导套在导柱上运动，保证了推件板的运动精度。定模座板上装有导柱，为点浇口凝料推板和定模板的运动导向。

5. 结构强度计算
 （略）

6. 模具成形尺寸设计计算
 取678的平均成形收缩率为0.6%，塑件未注公差按照SJ 1372取8级精度公差值选取。塑件尺寸如图所示。
1. $\phi 40 +0.26 \rightarrow \phi 40.26 -0.26$

$$L_{m1} \Delta x = \frac{1}{6} \sum \frac{\Delta x}{3} \sum \quad \delta_z = \frac{\Delta}{3} \quad x = 0.75$$

\[
L_{m1} \Delta x = 1 + \bar{S} \bar{L}_{s1} - x \Delta_0 + \delta_z = 1 + 0.6\% \times 40.26 - 0.75 \times 0.26 - 0.99
\]
\[
= 40.31 + 0.99
\]

2. $R25 +0.94 \rightarrow R25.94 -0.94$

$$L_{m2} \Delta x = \frac{1}{6} \sum \frac{\Delta x}{3} \sum \quad \delta_z = \frac{\Delta}{3} \quad x = 0.5$$

\[
L_{m2} \Delta x = 1 + \bar{S} \bar{L}_{s2} - x \Delta_0 + \delta_z = 1 + 0.6\% \times 25.94 - 0.75 \times 0.94 - 0.31
\]
\[
= 25.39 + 0.31
\]

3. $\phi 50 +1.2 \rightarrow \phi 51.2 -1.2$

$$H_{m1} \Delta x = \frac{1}{6} \sum \frac{\Delta x}{3} \sum \quad \delta_z = \frac{\Delta}{3} \quad x = 0.5$$

\[
H_{m1} \Delta x = 1 + \bar{S} \bar{L}_{s1} - x \Delta_0 + \delta_z = 1 + 0.6\% \times 51.2 - 0.5 \times 1.2 - 0.40
\]
\[
= 50.91 + 0.40
\]

4. $\phi 45 +1.2 \rightarrow \phi 46.2 -1.2$

$$H_{m2} \Delta x = \frac{1}{6} \sum \frac{\Delta x}{3} \sum \quad \delta_z = \frac{\Delta}{3} \quad x = 0.5$$

\[
H_{m2} \Delta x = 1 + \bar{S} \bar{L}_{s2} - x \Delta_0 + \delta_z = 1 + 0.6\% \times 46.2 - 0.5 \times 1.2 - 0.40
\]
\[
= 45.88 + 0.40
\]

5. $\phi 36.8 +0.26 \rightarrow \phi 36.8 +0.26$

$$L_{s1} \Delta x = \frac{1}{6} \sum \frac{\Delta x}{3} \sum \quad \delta_z = \frac{\Delta}{3} \quad x = 0.75$$

\[
L_{s1} \Delta x = 1 + \bar{S} \bar{L}_{s1} + x \Delta_0 - \delta_z = 1 + 0.6\% \times 36.8 + 0.75 \times 0.26 - 0.09
\]
\[
= 37.22 - 0.09
\]

6. $\phi 10 +0.52 \rightarrow \phi 10 +0.52$

$$L_{s2} \Delta x = \frac{1}{6} \sum \frac{\Delta x}{3} \sum \quad \delta_z = \frac{\Delta}{3} \quad x = 0.5$$

\[
L_{s2} \Delta x = 1 + \bar{S} \bar{L}_{s2} + x \Delta_0 - \delta_z = 1 + 0.6\% \times 10 + 0.75 \times 0.52 - 0.17
\]
\[
= 10.45 - 0.17
\]

7. $48.4 +1.2 \rightarrow \phi 48.4 +1.2$

$$L_{s3} \Delta x = \frac{1}{6} \sum \frac{\Delta x}{3} \sum \quad \delta_z = \frac{\Delta}{3} \quad x = 0.5$$

\[
L_{s3} \Delta x = 1 + \bar{S} \bar{L}_{s3} + x \Delta_0 - \delta_z = 1 + 0.6\% \times 48.4 + 0.75 \times 0.52 - 0.17
\]
模具加热、冷却系统的计算

一般生产材料塑件的注射模具不需要外加热。

模具冷却分为两部分，一部分是型腔的冷却，另一部分是型芯的冷却。

型腔的冷却是由在定模板（中间板）上的两条冷却水道完成，如图所示。

型芯的冷却如图所示，在型芯内部开有冷却水孔，中间用隔水板隔开，冷却水由支承板上的冷却水孔进入，沿着隔水板的一侧上升到型芯的上部，翻过隔水板，流入另一侧，再流回支承板上的冷却水孔。然后继续冷却第二个型芯，最后由支承板上的冷却水孔流出模具。型芯与支承板之间用密封圈密封。

模具主要零件图及加工工艺规程

模具定模板（中间板）零件图及加工工艺规程

定模板（中间板）的加工工艺：

1. 以基准角定位，加工和的型腔孔，可以采用坐标镗床或

2. 以基准角定位，加工的型芯孔

10.4.4

1. ...
加工中心完成。

以基准角定位，加工宽、长、深及宽、深的装配侧滑块孔，可以采用铣床或加工中心完成。

以基准角定位，加工宽、长、深的斜楔装配孔及其上的，螺钉沉孔，可以采用铣床和钻床完成。

钳工研配侧滑块和斜楔。

将侧滑块装入定模板侧滑块孔内锁紧固定，共同加工，斜导柱孔，可以采用铣床或钻床完成。

以基准角定位，加工，冷却水孔，由钻床或深孔钻床完成。

模具侧滑块零件图及加工工艺规程

侧滑块零件图如图所示。

侧滑块加工工艺如下：

1. 加工外形尺寸，由铣床或加工中心完成。

2. 钳工研配，首先与推件板研配侧滑块的滑道部分，要求滑动灵活，无晃动间隙；其次研配侧滑块与型芯及定模板的配合，要求配合接触紧密，注射成形时不产生飞边；最后研配斜楔，要求斜楔在注射成形时锁紧侧滑块。

3. 与定模板配钻斜导柱孔。

4. 加工侧滑块的两个定位凹孔。

5. 钻孔，可以采用钻床或M8。

6. 4 × φ16 mm。

7. 2 × φ10 mm。

2. 10. 60
模具动模板(型芯固定板)零件图及加工工艺规程

动模板(型芯固定板)零件图如图所示。

动模板(型芯固定板)加工工艺如下:

(1) 以基准角定位,加工和的型芯固定孔,可以采用坐标镗床或加工中心完成。

(2) 以基准角定位,加工孔,可采用镗床或钻床完成。

(3) 钳工装配型芯。

模具总装图及模具的装配、试模

模具总装图及模具的总体装配图。模具的装配要求参考本章节。

模具的安装试模

试模是模具制造中的一个重要环节,试模中的修改、补充和调整是对于模具设计的补充。

(1) 试模前的准备

试模前要对模具及试模用的设备进行检验。模具的闭合高度,安装与注射机的各个配合尺寸、推出形式、开模距、模具工作要求等要符合所选设备的技术条件。检查模具各滑动零件配合间隙适当,无卡住及紧涩现象。活动要灵活、可靠,起止位置的定位要正确。各镶嵌件、紧固件要牢固,无松动现象。各种水管接头、阀门、附件、备件要齐全。对于试模设备也要进行全面检查,即对设备的油路、水路、电路、机械运动部位、各操纵件和显示信号要检查、调整,使之处于正常运转状态。
模具的安装及调试

模具的安装是指将模具从制造地点运至注射机所在地，并安装在指定注射机的全过程。

模具安装在注射机上要注意以下方面:
1. 模具的安装方位要满足设计图样的要求。
2. 模具中有侧向滑动结构时，尽量使其运动方向为水平方向。
3. 当模具长度与宽度尺寸相差较大时，应尽可能使较长的边与水平方向平行。
4. 模具带有液压油路接头、气路接头、热流道元件接线板时，尽可能放置在非操作一侧，以免操作不方便。

模具在注射机上的固定多采用螺钉、压板的形式，如图所示。

模具安装于注射机上之后，要进行空循环调整。其目的在于检验模具上各运动机构是否可靠、灵活，定位装置是否能够有效作用。要注意以下方面:

第10章 塑料注射模具制造与实例
图 10.63 1 压板； 2 螺钉； 3 模具； 4 注射机模板

合模后分型面不得有间隙，要有足够的合模力。

活动型芯、推出及导向部位运动及滑动要平稳、无干涉现象，定位要正确、可靠。

开模时，推出要平稳，保证将塑件及浇注系统凝料推出模具。

冷却水要畅通，不漏水，阀门控制正常。

试模模具安装调整后即可以进行试模。

加入原料原料的品种、规格、牌号应符合产品图样中的要求，成形性能应符合有关标准的规定。原料一般要预先进行干燥。

调整设备按照工艺条件要求调整注射压力、注射速度、注射量、成形时间、成形温度等工艺参数。

试模将模具安装在注射机上，选用合格的原料，根据推荐的工艺参数调整好注射机，采用手动操作。开始注射时，首先采用低压、低温和较长的时间条件下成形。如果型腔未充满，则增加注射时的压力。在提高压力无效时，可以适当提高温度条件。试模注射出样件。试模过程中容易产生的缺陷及原因可参考表 10-9。

<table>
<thead>
<tr>
<th>缺陷</th>
<th>原因</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>⑥</th>
<th>⑦</th>
<th>⑧</th>
<th>⑨</th>
</tr>
</thead>
<tbody>
<tr>
<td>制件不足</td>
<td>料筒温度太高</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>溢边</td>
<td>料筒温度太低</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>凹痕</td>
<td>注射压力太高</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>银丝</td>
<td>注射压力太低</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>熔接痕</td>
<td>模具温度太高</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>气泡</td>
<td>模具温度太低</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>裂纹</td>
<td>注射速度太慢</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>翘曲变形</td>
<td>注射时间太长</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>加料太多</td>
<td>注射时间太短</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>加料太少</td>
<td>成形周期太长</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原料含水分过多</td>
<td>分流道或浇口太小</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>模穴排气不好</td>
<td>制件太薄</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>制件太厚或变化大</td>
<td>注射机能力不足</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>注射机锁模力不足</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 10-9 试模过程中容易产生的缺陷及原因
试模过程中，应进行详细记录，将结果填入试模记录卡，并保留试模的样件。

通过试模可以检验出模具结构是否合理；所提供的样件是否符合用户的要求；模具能否完成批量生产。针对试模中发现的问题，对模具进行修改、调整、再试模，使模具和生产出的样件满足客户的要求，试模合格的模具，应清理干净，涂防锈油入库保存。

如何确定塑料注射模具的设计方案？

常用的模具加工方法有哪些？各有何特点？

塑料注射模具对常用的材料有哪些要求？常用的塑料注射模具型腔材料有哪些？

如何选择电火花加工中的电规准？

为什么要对塑料注射模具型腔进行研磨加工？常用的研磨加工方法有哪些？

塑料注射模具装配应注意哪些问题？

分析塑件图应了解哪些内容？

校核模具安装尺寸应了解注射机的哪些参数？

如图所示塑件，试自拟产品要求，完成塑料注射模具设计。
1. 屈华昌. 塑料成形工艺与模具设计. 北京: 高等教育出版社, 2001
2. 陈锡栋, 周小玉. 实用模具技术手册. 北京: 机械工业出版社, 2002
3. 付丽, 张秀棉. 塑料模具设计制造与应用实例. 北京: 机械工业出版社, 2002
4. 许发樾. 模具标准应用手册. 北京: 机械工业出版社, 1994
5. 模具制造手册编写组. 模具制造手册. 第2版. 北京: 机械工业出版社, 1997
6. 模具制造手册编写组. 模具制造手册. 北京: 机械工业出版社, 1994
7. 成都科技大学等合编. 塑料成形模具. 北京: 中国轻工业出版社, 1994
8. 伦克. 聚合物流变学. 宋家琪, 徐支祥译. 北京: 国防工业出版社, 1983
9. 曼格斯, 默兰. 塑料注射成形模具的设计与制造. 李玉泉译. 北京: 轻工业出版社, 1993